首页> 外文期刊>ACM transactions on computational logic >From 2-Sequents and Linear Nested Sequents to Natural Deduction for Normal Modal Logics
【24h】

From 2-Sequents and Linear Nested Sequents to Natural Deduction for Normal Modal Logics

机译:从2个顺序和线性嵌套的顺序到普通模态逻辑的自然扣除

获取原文
获取原文并翻译 | 示例

摘要

We extend to natural deduction the approach of Linear Nested Sequents and of 2-Sequents. Formulas are decorated with a spatial coordinate, which allows a formulation of formal systems in the original spirit of natural deduction: only one introduction and one elimination rule per connective, no additional (structural) rule, no explicit reference to the accessibility relation of the intended Kripke models. We give systems for the normal modal logics from K to S4. For the intuitionistic versions of the systems, we define proof reduction, and prove proof normalization, thus obtaining a syntactical proof of consistency. For logics K and K4 we use existence predicates (a la Scott) for formulating sound deduction rules.
机译:我们延伸到自然扣除线性嵌套顺序和2次顺序的方法。 公式装饰有空间坐标,可以在自然扣除的原始精神中制定正规系统:每次结缔组织只有一个介绍和一个消除规则,没有额外的(结构)规则,没有明确参考预期的可访问性关系 Kripke模型。 我们为来自k到S4的正常模态逻辑提供系统。 对于系统的直觉版本,我们定义了减少证明,并证明证明标准化,从而获得了一致性的语法证明。 对于逻辑K和K4,我们使用存在谓词(LA Scott)来配制声音扣除规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号