首页> 外文期刊>ACM transactions on computational logic >Model Checking a Logic for True Concurrency
【24h】

Model Checking a Logic for True Concurrency

机译:模型检查真实并发的逻辑

获取原文
获取原文并翻译 | 示例

摘要

We study the model-checking problem for a logic for true concurrency, whose formulae predicate about events in computations and their causal dependencies. The logic, which represents the logical counterpart of history-preserving bisimilarity, is naturally interpreted over event structures or any formalism that can be given a causal semantics, like Petri nets. It includes least and greatest fixpoint operators and thus it can express properties of infinite computations. Since the event structure associated with a system is typically infinite (even if the system is finite state), already the decidability of model-checking is non-trivial. We first develop a local model-checking technique based on a tableau system, for which, over a class of event structures satisfying a suitable regularity condition, referred to as strong regularity, we prove termination, soundness, and completeness. The tableau system allows for a clean and intuitive proof of decidability, but a direct implementation of the procedure can be extremely inefficient. For easing the development of a more efficient model-checking technique, we move to an automata-theoretic framework. Given a formula and a strongly regular event structure, we show how to construct a parity tree automaton whose language is non-empty if and only if the event structure satisfies the formula. The automaton is usually infinite. We discuss how it can be quotiented to an equivalent finite automaton, where emptiness can be checked effectively. To show the applicability of the approach, we discuss how it instantiates to finite safe Petri nets, providing also a corresponding proof-of-concept model-checking tool.
机译:我们研究了真正并发的逻辑模型检查问题,其公式谓词在计算中的事件及其因果依赖项。表示历史保存双模性的逻辑对应物的逻辑自然地通过事件结构或任何可以给予因果语义的形式主义来解释,如Petri网。它包括最少和最大的FixPoint运算符,因此可以表达无限计算的属性。由于与系统相关联的事件结构通常是无限的(即使系统是有限状态),则模型检查的可解锁是非微不足道的。我们首先基于Tableau系统开发了本地模型检查技术,其中,在一类满足合适规律性的事件结构上,称为强规律,我们证明终止,声音和完整性。 Tableau系统允许清洁和直观的可解除性证明,但直接实施该程序可能是极低的。为了缓解开发更有效的模型检查技术,我们迁移到自动机构框架。鉴于公式和强烈常规的事件结构,我们展示了如何构造一个奇偶校验树自动机,如果事件结构满足公式,则才能且才有才能非空。自动机通常是无限的。我们讨论如何在同等的有限自动机上所提供的,其中可以有效地检查空虚。为了展示该方法的适用性,我们讨论它如何实例化为有限安全的Petri网,也提供了相应的概念验证模型检查工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号