首页> 外文期刊>ACM transactions on computational logic >Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories
【24h】

Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories

机译:可满足模理论的有效克雷格插值生成

获取原文

摘要

The problem of computing Craig interpolants has recently received a lot of interest. In this article, we address the problem of efficient generation of interpolants for some important fragments of first-order logic, which are amenable for effective decision procedures, called satisfiability modulo theory (SMT) solvers. We make the following contributions. First, we provide interpolation procedures for several basic theories of interest: the theories of linear arithmetic over the rationals, difference logic over rationals and integers, and UTVPI over rationals and integers. Second, we define a novel approach to interpolate combinations of theories that applies to the delayed theory combination approach. Efficiency is ensured by the fact that the proposed interpolation algorithms extend state-of-the-art algorithms for satisfiability modulo theories. Our experimental evaluation shows that the MathSAT SMT solver can produce interpolants with minor overhead in search, and much more efficiently than other competitor solvers.
机译:最近,计算克雷格插值的问题引起了人们的极大兴趣。在本文中,我们解决了一些重要的一阶逻辑片段的插值的高效生成问题,这些插值适用于有效的决策程序,即可满足性模理论(SMT)求解器。我们做出以下贡献。首先,我们提供了一些有趣的基础理论的内插程序:有理数基础上的线性算术理论,有理数和整数基础上的差分逻辑以及有理数和整数基础上的UTVPI。其次,我们定义了一种适用于延迟理论组合方法的插值理论组合的新颖方法。所提出的插值算法扩展了可满足性模理论的最新算法,从而确保了效率。我们的实验评估表明,MathSAT SMT求解器可以以较小的搜索开销生成插值,并且比其他竞争对手的求解器更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号