首页> 外文期刊>ACM transactions on computational logic >Parallel Abductive Query Answering in Probabilistic Logic Programs
【24h】

Parallel Abductive Query Answering in Probabilistic Logic Programs

机译:概率逻辑程序中的并行归纳查询应答

获取原文
获取原文并翻译 | 示例

摘要

Action-probabilistic logic programs (ap-programs) are a class of probabilistic logic programs that have been extensively used during the last few years for modeling behaviors of entities. Rules in op-programs have the form "If the environment in which entity E operates satisfies certain conditions, then the probability that E will take some action A is between L and U". Given an op-program, we are interested in trying to change the environment, subject to some constraints, so that the probability that entity E takes some action (or combination of actions) is maximized. This is called the Basic Abductive Query Answering Problem (BAQA). We first formally define and study the complexity of BAQA, and then go on to provide an exact (exponential time) algorithm to solve it, followed by more efficient algorithms for specific subclasses of the problem. We also develop appropriate heuristics to solve BAQA efficiently.The second problem, called the Cost-based Query Answering (CBQA) problem checks to see if there is some way of achieving a desired action (or set of actions) with a probability exceeding a threshold, given certain costs. We first formally define and study an exact (intractable) approach to CBQA, and then go on to propose a more efficient algorithm for a specific subclass of op-programs that builds on the results for the basic version of this problem. We also develop the first algorithms for parallel evaluation of CBQA. We conclude with an extensive report on experimental evaluations performed over prototype implementations of the algorithms developed for both BAQA and CBQA, showing that our parallel algorithms work well in practice.
机译:动作概率逻辑程序(ap程序)是一类概率逻辑程序,在过去几年中已广泛用于建模实体的行为。 op程序中的规则的格式为“如果实体E所在的环境满足某些条件,则E采取某种行动A的概率在L和U之间”。给定一个操作程序,我们有兴趣尝试在一定的约束下尝试更改环境,以使实体E采取某些操作(或操作组合)的可能性最大化。这称为基本归纳查询回答问题(BAQA)。我们首先正式定义和研究BAQA的复杂性,然后继续提供一种精确的(指数时间)算法来解决它,然后是针对问题的特定子类的更有效的算法。我们还开发了适当的启发式方法来有效解决BAQA。第二个问题称为基于成本的查询回答(CBQA)问题,以检查是否有某种方法可以以超过阈值的概率实现所需的操作(或一组操作) ,但要支付一定的费用。我们首先正式定义和研究CBQA的精确(难处理)方法,然后继续针对操作程序的特定子类提出更有效的算法,该算法基于此问题的基本版本的结果。我们还开发了第一个用于CBQA并行评估的算法。最后,我们针对针对BAQA和CBQA开发的算法的原型实现对实验评估进行了详尽的报告,表明我们的并行算法在实践中效果很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号