首页> 外文期刊>ACM transactions on computational logic >A Model-Theoretic Approach to Belief Change in Answer Set Programming
【24h】

A Model-Theoretic Approach to Belief Change in Answer Set Programming

机译:答案集编程中信念改变的模型理论方法

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of belief change in (nonmonotonic) logic programming under answer set semantics. Our formal techniques are analogous to those of distance-based belief revision in propositional logic. In particular, we build upon the model theory of logic programs furnished by SE interpretations, where an SE interpretation is a model of a logic program in the same way that a classical interpretation is a model of a propositional formula. Hence we extend techniques from the area of belief revision based on distance between models to belief change in logic programs.We first consider belief revision: for logic programs P and Q, the goal is to determine a program R that corresponds to the revision of P by Q, denoted P * Q. We investigate several operators, including (logic program) expansion and two revision operators based on the distance between the SE models of logic programs. It proves to be the case that expansion is an interesting operator in its own right, unlike in classical belief revision where it is relatively uninteresting. Expansion and revision are shown to satisfy a suite of interesting properties; in particular, our revision operators satisfy all or nearly all of the AGM postulates for revision.We next consider approaches for merging a set of logic programs, P_1,…,P_n. Again, our formal techniques are based on notions of relative distance between the SE models of the logic programs. Two approaches are examined. The first informally selects for each program P_i those models of P_i that vary the least from models of the other programs. The second approach informally selects those models of a program P_0 that are closest to the models of programs P_1,…,P_n In this case, PQ can be thought of as a set of database integrity constraints. We examine these operators with regards to how they satisfy relevant postulate sets.Last, we present encodings for computing the revision as well as the merging of logic programs within the same logic programming framework. This gives rise to a direct implementation of our approach in terms of off-the-shelf answer set solvers. These encodings also reflect the fact that our change operators do not increase the complexity of the base formalism.
机译:我们在答案集语义下解决(非单调)逻辑编程中信念改变的问题。我们的形式技术类似于命题逻辑中基于距离的信念修正的形式技术。特别是,我们以SE解释提供的逻辑程序模型理论为基础,其中SE解释是逻辑程序的模型,与经典解释是命题公式的模型一样。因此,我们将技术从基于模型之间的距离的信念修订范围扩展到逻辑程序中的信念变化。我们首先考虑信念修订:对于逻辑程序P和Q,目标是确定与P的修订相对应的程序R由Q表示,表示为P *Q。我们根据逻辑程序SE模型之间的距离研究了几种运算符,包括(逻辑程序)扩展和两个修订运算符。事实证明,扩展本身就是一个有趣的运算符,这与经典信念修订版相对有趣的情况不同。扩展和修订显示为满足一系列有趣的属性。特别是,我们的修订运算符满足所有或几乎所有的AGM假设进行修订。我们接下来考虑合并一组逻辑程序P_1,…,P_n的方法。同样,我们的形式技术基于逻辑程序的SE模型之间的相对距离的概念。研究了两种方法。第一个非正式地为每个程序P_i选择与其他程序的模型变化最小的P_i模型。第二种方法非正式地选择最接近程序P_1,…,P_n的那些程序P_0的模型。在这种情况下,可以将PQ视为一组数据库完整性约束。我们检查这些运算符是否满足相关的假设集。最后,我们介绍用于计算修订以及在同一逻辑编程框架内合并逻辑程序的编码。这样就可以根据现成的答案集求解器直接实施我们的方法。这些编码还反映了一个事实,即我们的变更操作员不会增加基本形式主义的复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号