首页> 外文期刊>ACM transactions on autonomous and adaptive systems >Human-centric Data Dissemination in the IoP: Large-scale Modeling and Evaluation
【24h】

Human-centric Data Dissemination in the IoP: Large-scale Modeling and Evaluation

机译:IOP中以人为中心的数据传播:大规模建模和评估

获取原文
获取原文并翻译 | 示例

摘要

Data management using Device-to-Device (D2D) communications and opportunistic networks (ONs) is one of the main focuses of human-centric pervasive Internet services. In the recently proposed "Internet of People" paradigm, accessing relevant data dynamically generated in the environment nearby is one of the key services. Moreover, personal mobile devices become proxies of their human users while exchanging data in the cyber world and, thus, largely use ONs and D2D communications for exchanging data directly. Recently, researchers have successfully demonstrated the viability of embedding human cognitive schemes in data dissemination algorithms for ONs. In this article, we consider one such scheme based on the recognition heuristic, a human decision-making scheme used to efficiently assess the relevance of data While initial evidence about its effectiveness is available, the evaluation of its behaviour in large-scale settings is still unsatisfactory. To overcome these limitations, we have developed a novel hybrid modeling methodology that combines an analytical model of data dissemination within small-scale communities of mobile users, with detailed simulations of interactions between different communities. This methodology allows us to evaluate the algorithm in large-scale city- and countrywide scenarios. Results confirm the effectiveness of cognitive data dissemination schemes, even when content popularity is very heterogenous.
机译:使用设备到设备(D2D)通信和机会网络(ONS)的数据管理是人以人为中心的普遍互联网服务的主要焦点之一。在最近提出的“人物互联网”范式中,访问附近的环境中动态生成的相关数据是关键服务之一。此外,个人移动设备成为人类用户的代理,同时在网络世界中交换数据,从而大大地使用ONS和D2D通信来直接交换数据。最近,研究人员已成功展示了在数据传播算法中嵌入人类认知计划的可行性。在本文中,我们考虑了一个基于识别启发式的一个这样的方案,用于有效地评估数据相关性的人类决策方案,同时初步证据可用的初始证据,在大规模设置中的行为评估仍然存在不满意。为了克服这些限制,我们开发了一种新的混合建模方法,将数据传播的分析模型结合在移动用户的小规模社区内,详细仿真不同社区之间的相互作用。该方法允许我们在大规模城市和全国范围内的情况下评估算法。结果证实了认知数据传播方案的有效性,即使内容普及是非常异因的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号