首页> 外文期刊>ACM transactions on autonomous and adaptive systems >ScatterD: Spatial Deployment Optimization with Hybrid Heuristic/Evolutionary Algorithms
【24h】

ScatterD: Spatial Deployment Optimization with Hybrid Heuristic/Evolutionary Algorithms

机译:ScattereD:混合启发式/进化算法的空间部署优化

获取原文
获取原文并翻译 | 示例

摘要

Distributed real-time and embedded (DRE) systems can be composed of hundreds of software components running across tens or hundreds of networked processors that are physically separated from one another. A key concern in DRE systems is determining the spatial deployment topology, which is how the software components map to the underlying hardware components. Optimizations, such as placing software components with high-frequency communications on processors that are closer together, can yield a number of important benefits, such as reduced power consumption due to decreased wireless transmission power required to communicate between the processing nodes. Determining a spatial deployment plan across a series of processors that will minimize power consumption is hard since the spatial deployment plan must respect a combination of real-time scheduling, fault-tolerance, resource, and other complex constraints. This article presents a hybrid heuristic/evolutionary algorithm, called ScatterD, for automatically generating spatial deployment plans that minimize power consumption. This work provides the following contributions to the study of spatial deployment optimization for power consumption minimization: (1) it combines heuristic bin-packing with an evolutionary algorithm to produce a hybrid algorithm with excellent deployment derivation capabilities and scalability, (2) it shows how a unique representation of the spatial deployment solution space integrates the heuristic and evolutionary algorithms, and (3) it analyzes the results of experiments performed with data derived from a large-scale avionics system that compares ScatterD with other automated deployment techniques. These results show that ScatterD reduces power consumption by between 6% and 240% more than standard bin-packing, genetic, and particle swarm optimization algorithms.
机译:分布式实时和嵌入式(DRE)系统可以由数百个软件组件组成,这些组件运行在数十个或数百个物理上彼此分离的联网处理器上。 DRE系统中的一个关键问题是确定空间部署拓扑,这就是软件组件如何映射到底层硬件组件。优化,例如将具有高频通信的软件组件放置在距离更近的处理器上,可以产生许多重要的好处,例如由于处理节点之间进行通信所需的无线传输功率降低而降低了功耗。很难确定跨一系列处理器的空间部署计划,以将功耗降至最低,因为空间部署计划必须考虑实时调度,容错,资源和其他复杂约束的组合。本文介绍了一种名为ScatterD的混合启发式/进化算法,该算法可自动生成将功耗降至最低的空间部署计划。这项工作为研究空间部署优化以最小化功耗提供了以下贡献:(1)将启发式bin打包与进化算法结合在一起,以产生具有出色的部署派生功能和可伸缩性的混合算法,(2)显示了如何空间部署解决方案空间的唯一表示形式整合了启发式算法和进化算法,并且(3)分析了使用大型航空电子系统得出的数据进行的实验结果,该系统将ScatterD与其他自动部署技术进行了比较。这些结果表明,ScatterD的功耗比标准装箱,遗传和粒子群优化算法降低了6%至240%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号