首页> 外文期刊>ACM transactions on autonomous and adaptive systems >Distributed Spatiotemporal Gesture Recognition in Sensor Arrays
【24h】

Distributed Spatiotemporal Gesture Recognition in Sensor Arrays

机译:传感器阵列中的分布式时空手势识别

获取原文
获取原文并翻译 | 示例

摘要

We present algorithms for gesture recognition using in-network processing in distributed sensor arrays embedded within systems such as tactile input devices, sensing skins for robotic applications, and smart walls. We describe three distributed gesture-recognition algorithms that are designed to function on sensor arrays with minimal computational power, limited memory, limited bandwidth, and possibly unreliable communication. These constraints cause storage of gesture templates within the system and distributed consensus algorithms for recognizing gestures to be difficult. Building up on a chain vector encoding algorithm commonly used for gesture recognition on a central computer, we approach this problem by dividing the gesture dataset between nodes such that each node has access to the complete dataset via its neighbors. Nodes share gesture information among each other, then each node tries to identify the gesture. In order to distribute the computational load among all nodes, we also investigate an alternative algorithm, in which each node that detects a motion will apply a recognition algorithm to part of the input gesture, then share its data with all other motion nodes. Next, we show that a hybrid algorithm that distributes both computation and template storage can address trade-offs between memory and computational efficiency.
机译:我们提出了使用手势识别算法,该算法使用嵌入在系统中的分布式传感器阵列(例如触觉输入设备,用于机器人应用程序的皮肤和智能墙)中的网络内处理进行手势识别。我们描述了三种分布式手势识别算法,这些算法旨在以最小的计算能力,有限的内存,有限的带宽以及可能的不可靠通信在传感器阵列上运行。这些约束导致手势模板在系统内的存储以及用于识别手势的分布式共识算法很困难。建立在通常用于中央计算机上的手势识别的链向量编码算法的基础上,我们通过在节点之间划分手势数据集来解决此问题,以便每个节点都可以通过其邻居访问完整的数据集。节点之间共享手势信息,然后每个节点尝试识别手势。为了在所有节点之间分配计算负荷,我们还研究了一种替代算法,其中每个检测到运动的节点都将识别算法应用于部分输入手势,然后与所有其他运动节点共享其数据。接下来,我们证明了一种混合算法,既可以分配计算空间又可以分配模板存储空间,可以解决内存和计算效率之间的折衷问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号