首页> 外文期刊>ACM transactions on autonomous and adaptive systems >A Reinforcement Learning Approach for Interdomain Routing with Link Prices
【24h】

A Reinforcement Learning Approach for Interdomain Routing with Link Prices

机译:具有链接价格的域间路由的强化学习方法

获取原文
获取原文并翻译 | 示例

摘要

In today's Internet, the commercial aspects of routing are gaining importance. Current technology allows Internet Service Providers (ISPs) to renegotiate contracts online to maximize profits. Changing link prices will influence interdomain routing policies that are now driven by monetary aspects as well as global resource and performance optimization. In this article, we consider an interdomain routing game in which the ISP's action is to set the price for its transit links. Assuming a cheapest path routing scheme, the optimal action is the price setting that yields the highest utility (i.e., profit) and depends both on the network load and the actions of other ISPs. We adapt a continuous and a discrete action learning automaton (LA) to operate in this framework as a tool that can be used by ISP operators to learn optimal price setting. In our model, agents representing different ISPs learn only on the basis of local information and do not need any central coordination or sensitive information exchange. Simulation results show that a single ISP employing LAs is able to learn the optimal price in a stationary environment. By introducing a selective exploration rule, LAs are also able to operate in nonstationary environments. When two ISPs employ LAs, we show that they converge to stable and fair equilibrium strategies.
机译:在当今的Internet中,路由的商业方面变得越来越重要。当前的技术允许Internet服务提供商(ISP)在线重新协商合同以最大化利润。链接价格的变化将影响域间路由策略,该策略现在受金钱,全球资源和性能优化的驱动。在本文中,我们考虑一个域间路由游戏,其中ISP的作用是为其传输链路设置价格。假设采用最便宜的路径路由方案,则最佳操作是价格设置,该价格设置可产生最高效用(即利润),并且取决于网络负载和其他ISP的操作。我们将连续和离散的动作学习自动机(LA)调整为可在此框架中运行的工具,供ISP运营商使用以学习最佳价格设置。在我们的模型中,代表不同ISP的代理仅根据本地信息学习,而无需任何中央协调或敏感信息交换。仿真结果表明,采用LA的单个ISP能够在固定环境中学习最优价格。通过引入选择性探索规则,洛杉矶还可以在非平稳环境中运行。当两个ISP使用LA时,我们表明它们收敛于稳定和公平的平衡策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号