首页> 外文期刊>ACM transactions on autonomous and adaptive systems >A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications
【24h】

A Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications

机译:流应用程序性能优化的逐步自动配置方法

获取原文
获取原文并翻译 | 示例

摘要

Data stream management systems (DSMSs) are scalable, highly available, and fault-tolerant systems that aggregate and analyze real-time data in motion. To continuously perform analytics on the fly within the stream, state-of-the-art DSMSs host streaming applications as a set of interconnected operators, with each operator encapsulating the semantic of a specific operation. For parallel execution on a particular platform, these operators need to be appropriately replicated in multiple instances that split and process the workload simultaneously. Because the way operators are partitioned affects the resulting performance of streaming applications, it is essential for DSMSs to have a method to compare different operators and make holistic replication decisions to avoid performance bottlenecks and resource wastage. To this end, we propose a step-wise profiling approach to optimize application performance on a given execution platform. It automatically scales distributed computations over streams based on application features and processing power of provisioned resources and builds the relationship between provisioned resources and application performance metrics to evaluate the efficiency of the resulting configuration. Experimental results confirm that the proposed approach successfully fulfills its goals with minimal profiling overhead.
机译:数据流管理系统(DSMS)是可伸缩,高度可用且具有容错能力的系统,可以聚合和分析运动中的实时数据。为了连续不断地在流中动态执行分析,最新的DSMS将流应用程序托管为一组相互连接的运算符,每个运算符都封装了特定操作的语义。为了在特定平台上并行执行,需要在多个实例中适当复制这些运算符,以同时拆分和处理工作负载。由于操作员的分区方式会影响流式应用程序的性能,因此DSMS必须具有一种方法来比较不同的操作员并做出整体复制决策,以避免性能瓶颈和资源浪费。为此,我们提出了一种逐步分析的方法,以优化给定执行平台上的应用程序性能。它根据应用程序功能和预配置资源的处理能力自动缩放流上的分布式计算,并在预配置资源和应用程序性能指标之间建立关系,以评估结果配置的效率。实验结果证实,所提出的方法能够以最少的分析开销成功实现其目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号