首页> 外文期刊>ACM transactions on Asian and low-resource language information processing >A Neural Joint Model with BERT for Burmese Syllable Segmentation, Word Segmentation, and POS Tagging
【24h】

A Neural Joint Model with BERT for Burmese Syllable Segmentation, Word Segmentation, and POS Tagging

机译:具有伯尔马斯音节分割,词分割和POS标记的伯特的神经关节模型

获取原文
获取原文并翻译 | 示例

摘要

The smallest semantic unit of the Burmese language is called the syllable. In the present study, it is intended to propose the first neural joint learning model for Burmese syllable segmentation, word segmentation, and part-of-speech (POS) tagging with the BERT. The proposed model alleviates the error propagation problem of the syllable segmentation. More specifically, it extends the neural joint model for Vietnamese word segmentation, POS tagging, and dependency parsing [28] with the pre-training method of the Burmese character, syllable, and word embedding with BiLSTM-CRF-based neural layers. In order to evaluate the performance of the proposed model, experiments are carried out on Burmese benchmark datasets, and we fine-tune the model of multilingual BERT. Obtained results show that the proposed joint model can result in an excellent performance.
机译:缅甸语言的最小语义单位称为音节。 在本研究中,旨在提出缅甸音节分段,词分割和语音(POS)标记的第一个神经联合学习模型与BERT标记。 所提出的模型减轻了音节分段的错误传播问题。 更具体地,它扩展了越南语分割,POS标记和依赖性解析[28]的神经关节模型与缅甸人物,音节和基于Bilstm-CRF的神经层嵌入的预训练方法。 为了评估所提出的模型的性能,实验是在缅甸基准数据集中进行的,并且我们微调了多语种伯特模型。 获得的结果表明,所提出的联合模型可导致性能出色。

著录项

  • 来源
  • 作者单位

    Kunming Univ Sci & Technol Key Lab Artificial Intelligence Informat Engn & A Kunming Yunnan Peoples R China;

    Kunming Univ Sci & Technol Key Lab Artificial Intelligence Informat Engn & A Kunming Yunnan Peoples R China;

    Kunming Univ Sci & Technol Key Lab Artificial Intelligence Informat Engn & A Kunming Yunnan Peoples R China;

    Kunming Univ Sci & Technol Key Lab Artificial Intelligence Informat Engn & A Kunming Yunnan Peoples R China;

    Kunming Univ Sci & Technol Key Lab Artificial Intelligence Informat Engn & A Kunming Yunnan Peoples R China;

    Kunming Univ Sci & Technol Key Lab Artificial Intelligence Informat Engn & A Kunming Yunnan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Burmese; word segmentation; POS tagging; joint training; BiLSTM-CRF; BERT;

    机译:缅甸人;词分割;POS标记;联合培训;Bilstm-CRF;伯特;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号