首页> 外文期刊>ACM transactions on Asian language information processing >Chinese Short Text Classification with Mutual-Attention Convolutional Neural Networks
【24h】

Chinese Short Text Classification with Mutual-Attention Convolutional Neural Networks

机译:中国短文本分类与互连卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

The methods based on the combination of word-level and character-level features can effectively boost performance on Chinese short text classification. A lot of works concatenate two-level features with little processing, which leads to losing feature information. In this work, we propose a novel framework called Mutual-Attention Convolutional Neural Networks, which integrates word and character-level features without losing too much feature information. We first generate two matrices with aligned information of two-level features by multiplying word and character features with a trainable matrix. Then, we stack them as a three-dimensional tensor. Finally, we generate the integrated features using a convolutional neural network. Extensive experiments on six public datasets demonstrate improved performance of our new framework over current methods.
机译:基于单词级和字符级别的组合的方法可以有效地提高了中文短文本分类的性能。许多工作连接两级功能,处理很少,导致失败的功能信息。在这项工作中,我们提出了一种名为互连卷积神经网络的新颖框架,它集成了单词和字符级功能而不会丢失太多的特征信息。我们首先通过将具有培训矩阵的单词和字符特征乘以单词和字符特征来生成两个具有双层特征的对齐信息的两个矩阵。然后,我们将它们堆叠为三维张量。最后,我们使用卷积神经网络生成集成功能。六个公共数据集的广泛实验表明了我们对当前方法的新框架的改进性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号