首页> 外文期刊>ACM transactions on Asian language information processing >Learning to Recognize Textual Entailment in Japanese Texts with the Utilization of Machine Translation
【24h】

Learning to Recognize Textual Entailment in Japanese Texts with the Utilization of Machine Translation

机译:利用机器翻译学习识别日语文本中的文本蕴涵

获取原文
获取原文并翻译 | 示例

摘要

Recognizing Textual Entailment (RTE) is a fundamental task in Natural Language Understanding. The task is to decide whether the meaning of a text can be inferred from the meaning of another one. In this article, we conduct an empirical study of recognizing textual entailment in Japanese texts, in which we adopt a machine learning-based approach to the task. We quantitatively analyze the effects of various entailment features, machine learning algorithms, and the impact of RTE resources on the performance of an RTE system. This article also investigates the use of machine translation for the RTE task and determines whether machine translation can be used to improve the performance of our RTE system. Experimental results achieved on benchmark data sets show that our machine learning-based RTE system outperforms the baseline methods based on lexical matching and syntactic matching. The results also suggest that the machine translation component can be utilized to improve the performance of the RTE system.
机译:识别文本蕴含(RTE)是自然语言理解中的一项基本任务。任务是确定是否可以从另一文本的含义推断出文本的含义。在本文中,我们对识别日语文本中的文本蕴涵进行了实证研究,其中我们采用了基于机器学习的方法来完成任务。我们定量分析各种附属功能,机器学习算法以及RTE资源对RTE系统性能的影响。本文还研究了将机器翻译用于RTE任务,并确定是否可以使用机器翻译来改善我们RTE系统的性能。在基准数据集上获得的实验结果表明,基于机器学习的RTE系统优于基于词汇匹配和句法匹配的基线方法。结果还表明,可以使用机器翻译组件来提高RTE系统的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号