首页> 外文期刊>ACM transactions on Asian language information processing >Chinese Syntax Parsing Based on Sliding Match of Semantic String
【24h】

Chinese Syntax Parsing Based on Sliding Match of Semantic String

机译:基于语义字符串滑动匹配的中文句法分析

获取原文
获取原文并翻译 | 示例

摘要

Different from the current syntax parsing based on deep learning, we present a novel Chinese parsing method, which is based on Sliding Match of Semantic String (SMOSS). (1) Training stage: In a treebank, headwords of tree nodes are represented by semantic codes given in the Synonym Dictionary (Tongyici Cilin). N-gram semantic templates are extracted from every layer of a syntax tree by means of sliding window to establish one N-gram semantic template library. (2) Parsing stage: Words of a sentence, including headwords of chunks, are represented by the semantic codes from Tongyici Cilin. With the sliding window method, N-gram semantic code strings are extracted to match with the templates in the N-gram semantic template library; subsequently, the mapping information of the matched templates is employed to guide the chunking of semantic code strings. The Chinese syntax parsing is completed through continuous matching and chunking. On the same training scale, N-gram semantic template can create favorable conditions for flexible matching and improve the syntax parsing performance. With train and test sets from the Tsinghua Chinese Treebank (TCT), the results are F1-score 99.71% (closed test) and F1-score 70.43% (open test), respectively.
机译:与当前基于深度学习的语法解析不同,我们提出了一种基于语义字符串滑动匹配(SMOSS)的新颖的中文解析方法。 (1)训练阶段:在树库中,树节点的headwords用同义词词典(Tongyici Cilin)中给出的语义代码表示。通过滑动窗口从语法树的每一层提取N-gram语义模板,以建立一个N-gram语义模板库。 (2)解析阶段:句子的单词,包括块的headwords,由Tongyici Cilin的语义代码表示。使用滑动窗口方法,提取N-gram语义代码字符串以与N-gram语义模板库中的模板匹配;随后,使用匹配模板的映射信息来指导语义代码串的分块。中文语法解析是通过连续匹配和分块完成的。在相同的训练规模上,N-gram语义模板可以为灵活匹配创造有利条件,并提高语法解析性能。使用清华中华树库(TCT)的训练集和测试集,结果分别为F1得分99.71%(封闭测试)和F1得分70.43%(开放测试)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号