首页> 外文期刊>ACM transactions on Asian language information processing >A Neural Semantic Parser for Math Problems Incorporating Multi-Sentence Information
【24h】

A Neural Semantic Parser for Math Problems Incorporating Multi-Sentence Information

机译:结合多句信息的数学问题的神经语义解析器

获取原文
获取原文并翻译 | 示例

摘要

In this article, we study the problem of parsing a math problem into logical forms. It is an essential preprocessing step for automatically solving math problems. Most of the existing studies about semantic parsing mainly focused on the single-sentence level. However, for parsing math problems, we need to take the information of multiple sentences into consideration. To achieve the task, we formulate the task as a machine translation problem and extend the sequence-to-sequence model with a novel two-encoder architecture and a word-level selective mechanism. For training and evaluating the proposed method, we construct a large-scale dataset. Experimental results show that the proposed two-encoder architecture and word-level selective mechanism could bring significant improvement. The proposed method can achieve better performance than the state-of-the-art methods.
机译:在本文中,我们研究将数学问题解析为逻辑形式的问题。这是自动解决数学问题的重要预处理步骤。现有的大多数有关语义解析的研究都集中在单句层面。但是,在解析数学问题时,我们需要考虑多个句子的信息。为了完成这项任务,我们将任务表述为机器翻译问题,并使用新颖的双编码器体系结构和词级选择机制扩展了序列到序列模型。为了训练和评估该方法,我们构建了一个大规模的数据集。实验结果表明,所提出的双编码器体系结构和字级选择机制可以带来重大改进。所提出的方法可以实现比最新方法更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号