首页> 外文期刊>ACM transactions on Asian language information processing >Multi-task Stack Propagation for Neural Quality Estimation
【24h】

Multi-task Stack Propagation for Neural Quality Estimation

机译:用于神经质量估计的多任务堆栈传播

获取原文
获取原文并翻译 | 示例

摘要

Quality estimation is an important task in machine translation that has attracted increased interest in recent years. A key problem in translation-quality estimation is the lack of a sufficient amount of the quality annotated training data. To address this shortcoming, the Predictor-Estimator was proposed recently by introducing "word prediction" as an additional pre-subtask that predicts a current target word with consideration of surrounding source and target contexts, resulting in a two-stage neural model composed of a predictor and an estimator. However, the original Predictor-Estimator is not trained on a continuous stacking model but instead in a cascaded manner that separately trains the predictor from the estimator. In addition, the Predictor-Estimator is trained based on single-task learning only, which uses target-specific quality-estimation data without using other training data that are available from other-level quality-estimation tasks. In this article, we thus propose a multi-task stack propagation, which extensively applies stack propagation to fully train the Predictor-Estimator on a continuous stacking architecture and multi-task learning to enhance the training data from related other-level quality-estimation tasks. Experimental results on WMT17 quality-estimation datasets show that the Predictor-Estimator trained with multi-task stack propagation provides statistically significant improvements over the baseline models. In particular, under an ensemble setting, the proposed multi-task stack propagation leads to state-of-the-art performance at all the sentence/word/phrase levels for WMT17 quality estimation tasks.
机译:质量估计是机器翻译中的一项重要任务,近年来已引起越来越多的关注。翻译质量估计中的一个关键问题是缺少足够数量的带有质量注释的培训数据。为了解决此缺点,最近通过引入“单词预测”作为附加的预子任务来提出Predictor-Estimator,该子任务通过考虑周围的源和目标上下文来预测当前的目标单词,从而形成一个由预测器和估计器。但是,原始的Predictor-Estimator并不是在连续的堆叠模型上训练的,而是以级联的方式进行的,该方法从训练器中分离地训练了预测器。此外,仅基于单任务学习来训练Predictor-Estimator,它使用特定于目标的质量估计数据,而不使用其他级别的质量估计任务中可用的其他训练数据。因此,在本文中,我们提出了一种多任务堆栈传播方法,该方法广泛地应用堆栈传播方法,以在连续堆栈体系结构和多任务学习中全面训练Predictor-Estimator,以增强来自其他相关级别的质量估计任务的训练数据。 WMT17质量估计数据集上的实验结果表明,经过多任务堆栈传播训练的Predictor-Estimator在基线模型上提供了统计上显着的改进。特别是,在整体设置下,针对WMT17质量评估任务,所提出的多任务堆栈传播导致了所有句子/单词/短语级别的最新性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号