首页> 外文期刊>ACM transactions on Asian language information processing >Sub-Stroke-Wise Relative Feature for Online Indic Handwriting Recognition
【24h】

Sub-Stroke-Wise Relative Feature for Online Indic Handwriting Recognition

机译:次笔划相对功能,用于在线印度手写体识别

获取原文
获取原文并翻译 | 示例

摘要

The main problem of Bangla (Bengali) and Devanagari handwriting recognition is the shape similarity of characters. There are only a few pieces of work on writer-independent cursive online Indian text recognition, and the shape similarity problem needs more attention from the researchers. To handle the shape similarity problem of cursive characters of Bangla and Devanagari scripts, in this article, we propose a new category of features called 'sub-stroke-wise relative feature' (SRF) which are based on relative information of the constituent parts of the handwritten strokes. Relative information among some of the parts within a character can be a distinctive feature as it scales up small dissimilarities and enhances discrimination among similar-looking shapes. Also, contextual anticipatory phenomena are automatically modeled by this type of feature, as it takes into account the influence of previous and forthcoming strokes. We have tested popular state-of-the-art feature sets as well as proposed SRF using various (up to 20,000-word) lexicons and noticed that SRF significantly outperforms the state-of-the-art feature sets for online Bangla and Devanagari cursive word recognition.
机译:孟加拉语和梵文手写识别的主要问题是字符的形状相似性。关于独立于作者的草书在线印度文字识别的工作很少,而且形状相似性问题需要研究人员的更多关注。为了处理孟加拉语和梵文的草书字符的形状相似性问题,在本文中,我们基于特征的组成部分的相对信息,提出了一种新的特征,称为“次笔划相对特征”(SRF)。手写笔触。字符内某些部分之间的相对信息可能是一个鲜明的特征,因为它会扩大细微的差异,并增强相似形状之间的区别。同样,由于这种类型的特征考虑了先前和即将来临的笔划的影响,因此可以通过这种类型的功能自动对情景预期现象进行建模。我们已经使用各种(最多20,000个单词)词典对流行的最新功能集以及建议的SRF进行了测试,并注意到SRF明显优于在线Bangla和Devanagari草书的最新功能集单词识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号