首页> 外文期刊>ACM transactions on privacy and security >Proactively Identifying Emerging Hacker Threats from the Dark Web: A Diachronic Graph Embedding Framework (D-GEF)
【24h】

Proactively Identifying Emerging Hacker Threats from the Dark Web: A Diachronic Graph Embedding Framework (D-GEF)

机译:积极地识别暗网中的新兴黑客威胁:嵌入框架(D-GEF)的历前曲线图

获取原文
获取原文并翻译 | 示例

摘要

Cybersecurity experts have appraised the total global cost of malicious hacking activities to be $450 billion annually. Cyber Threat Intelligence (CTI) has emerged as a viable approach to combat this societal issue. However, existing processes are criticized as inherently reactive to known threats. To combat these concerns, CTI experts have suggested proactively examining emerging threats in the vast, international online hacker community. In this study, we aim to develop proactive CTI capabilities by exploring online hacker forums to identify emerging threats in terms of popularity and tool functionality. To achieve these goals, we create a novel Diachronic Graph Embedding Framework (D-GEF). D-GEF operates on a Graph-of-Words (GoW) representation of hacker forum text to generate word embeddings in an unsupervised manner. Semantic displacement measures adopted from diachronic linguistics literature identify how terminology evolves. A series of benchmark experiments illustrate D-GEF's ability to generate higher quality than state-of-the-art word embedding models (e.g., word2vec) in tasks pertaining to semantic analogy, clustering, and threat classification. D-GEF's practical utility is illustrated with in-depth case studies on web application and denial of service threats targeting PHP and Windows technologies, respectively. We also discuss the implications of the proposed framework for strategic, operational, and tactical CTI scenarios. All datasets and code are publicly released to facilitate scientific reproducibility and extensions of this work.
机译:网络安全专家已经评估了恶意黑客活动的全球总成本每年为4.5亿美元。网络威胁情报(CTI)已成为打击这一社会问题的可行方法。然而,现有流程被批评为具有知名威胁的固有反应。为了打击这些问题,CTI专家建议积极审查广大国际在线黑客社区的新兴威胁。在这项研究中,我们旨在通过探索在线黑客论坛来识别在普及和工具功能方面的新出现威胁的主动CTI能力。为了实现这些目标,我们创建了一种新型历史媒体嵌入框架(D-GEF)。 D-GEF在黑客论坛文本的单词图(Gow)表示上运行,以以无人监督的方式生成Word Embedings。历时语言学文献采用的语义流离失所措施,了解术语如何发展。一系列基准测试说明了D-GEF的能力,它的能力比最先进的单词嵌入模型(例如,Word2VEC)与语义类比,群集和威胁分类有关的任务。 D-GEF的实用实用程序分别用深入的Web应用程序进行了深入的案例研究,分别拒绝了针对PHP和Windows Technologies的服务威胁。我们还讨论了拟议的战略,运营和战术CTI情景框架的影响。所有数据集和代码都公开发布,以促进这项工作的科学再现性和扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号