首页> 外文期刊>ACM transactions on privacy and security >Crowd Privacy: Publish More Useful Data with Less Privacy Exposure in Crowdsourced Location-Based Services
【24h】

Crowd Privacy: Publish More Useful Data with Less Privacy Exposure in Crowdsourced Location-Based Services

机译:人群隐私:在众包在基于位置的服务中发布更有用的数据

获取原文
获取原文并翻译 | 示例

摘要

Location-based services (LBSs) typically crowdsource geo-tagged data from mobile users. Collecting more data will generally improve the utility for LBS providers; however, it also leads to more privacy exposure of users' mobility patterns. Although the tension between data utility and user privacy has been recognized, there lacks a solution that determines how much data to collect-in both spatial and temporal domains-is the "best" for both mobile users and the service provider. This article proposes a strategy toward making an optimal tradeoff such that a user submits data only if her mobility privacy will not be compromised and the data utility of the LBS provider will be sufficiently improved. To this end, we first define and formulate a concept called privacy exposure, which incorporates both the spatial distribution and the temporal transition of a user's activity points. Second, we define and quantify data utility in terms of spatial repetitions and temporal closeness among data based on an economic principle. Then, we propose a PRivacy-preserving and UTility-Enhancing Crowdsourcing (PRUTEC) algorithm to determine, on behalf of each mobile user, whether a newly sensed piece of data should be submitted to the LBS provider. Our simulation demonstrates that PRUTEC improves the data utility of the service provider with a much less amount of data to collect and reduces privacy exposure for mobile users while collecting useful data continuously.
机译:基于位置的服务(LBSS)通常来自移动用户的地理标记数据。收集更多数据通常会改善LBS提供商的实用程序;但是,它也会导致用户移动模式的更多隐私暴露。虽然已经识别了数据实用程序和用户隐私之间的张力,但缺少一个解决方案,即确定空间和时间域的收集的数据 - 是移动用户和服务提供商的“最佳”。本文提出了制定最佳权衡的策略,使得用户仅在不妥协的流动性隐私时提交数据,并且LBS提供商的数据实用程序将充分提高。为此,我们首先定义并制定一个名为隐私曝光的概念,该概念包括空间分布和用户活动点的时间转换。其次,我们在基于经济原则的数据之间的空间重复和时间近似地区定义和量化数据实用性。然后,我们提出了一种隐私保留和效用增强的众包(PRUTEC)算法来代表每个移动用户确定是否应该将新感测数据的数据提交给LBS提供商。我们的模拟演示了PRUTEC通过更少数量的数据来提高服务提供商的数据实用程序,以收集和减少移动用户的隐私曝光,同时连续收集有用的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号