首页> 外文期刊>ACM Computing Surveys >A Survey on Representation Learning Efforts in Cybersecurity Domain
【24h】

A Survey on Representation Learning Efforts in Cybersecurity Domain

机译:网络安全域中的代表学习努力调查

获取原文
获取原文并翻译 | 示例

摘要

In this technology-based era, network-based systems are facing new cyber-attacks on daily bases. Traditional cybersecurity approaches are based on old threat-knowledge databases and need to be updated on a daily basis to stand against new generation of cyber-threats and protect underlying network-based systems. Along with updating threat-knowledge databases, there is a need for proper management and processing of data generated by sensitive real-time applications. In recent years, various computing platforms based on representation learning algorithms have emerged as a useful resource to manage and exploit the generated data to extract meaningful information. If these platforms are properly utilized, then strong cybersecurity systems can be developed to protect the underlying network-based systems and support sensitive real-time applications. In this survey, we highlight various cyber-threats, real-life examples, and initiatives taken by various international organizations. We discuss various computing platforms based on representation learning algorithms to process and analyze the generated data. We highlight various popular datasets introduced by well-known global organizations that can be used to train the representation learning algorithms to predict and detect threats. We also provide an in-depth analysis of research efforts based on representation learning algorithms made in recent years to protect the underlying network-based systems against current cyber-threats. Finally, we highlight various limitations and challenges in these efforts and available datasets that need to be considered when using them to build cybersecurity systems.
机译:在基于技术的时代,基于网络的系统正面临着日常基础的新网络攻击。传统的网络安全方法基于旧威胁知识数据库,并需要每天更新,以抵抗新一代网络威胁并保护基于网络的系统。随着更新威胁知识数据库,需要正确管理和处理敏感实时应用程序生成的数据。近年来,基于表示学习算法的各种计算平台都被出现为用于管理和利用所生成的数据以提取有意义信息的有用资源。如果这些平台适当地利用,则可以开发强大的网络安全系统来保护基于网络的基于网络的系统并支持敏感的实时应用。在这项调查中,我们突出了各种国际组织采取的各种网络威胁,现实生活的例子和倡议。我们讨论基于表示学习算法的各种计算平台来处理和分析所生成的数据。我们突出了由着名的全球组织推出的各种流行数据集,可用于培训表示学习算法预测和检测威胁。我们还提供了对近年来代表学习算法的基于代表学习算法的研究努力的深入分析,以保护基于潜在的基于网络的系统免受当前网络威胁。最后,我们在使用它们以构建网络安全系统时,我们突出了这些努力和可用数据集中的各种局限性和挑战。

著录项

  • 来源
    《ACM Computing Surveys》 |2020年第6期|111.1-111.28|共28页
  • 作者单位

    Swinburne Univ Technol Dept Comp Sci & Software Engn Hawthorn Campus Melbourne Vic 3122 Australia;

    Abdul Wali Khan Univ Dept Comp Sci Garden Campus Mardan 23200 Khyber Pakhtunk Pakistan;

    Univ Technol Sydney Broadway Campus Sydney NSW 2007 Australia;

    Swinburne Univ Technol Dept Comp Sci & Software Engn Hawthorn Campus Melbourne Vic 3122 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cyber-attacks; cybersecurity; computing; representation learning; datasets;

    机译:网络攻击;网络安全;计算;代表学习;数据集;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号