首页> 外文期刊>ACM Computing Surveys >Spatio-Temporal Data Mining: A Survey of Problems and Methods
【24h】

Spatio-Temporal Data Mining: A Survey of Problems and Methods

机译:时空数据挖掘:问题与方法概述

获取原文
获取原文并翻译 | 示例

摘要

Large volumes of spatio-temporal data are increasingly collected and studied in diverse domains, including climate science, social sciences, neuroscience, epidemiology, transportation, mobile health, and Earth sciences. Spatio-temporal data differ from relational data for which computational approaches are developed in the data-mining community for multiple decades in that both spatial and temporal attributes are available in addition to the actual measurements/attributes. The presence of these attributes introduces additional challenges that needs to be dealt with. Approaches for mining spatio-temporal data have been studied for over a decade in the data-mining community. In this article, we present a broad survey of this relatively young field of spatio-temporal data mining. We discuss different types of spatio-temporal data and the relevant data-mining questions that arise in the context of analyzing each of these datasets. Based on the nature of the data-mining problem studied, we classify literature on spatio-temporal data mining into six major categories: clustering, predictive learning, change detection, frequent pattern mining, anomaly detection, and relationship mining. We discuss the various forms of spatio-temporal data-mining problems in each of these categories.
机译:越来越多的时空数据在包括气候科学,社会科学,神经科学,流行病学,交通运输,移动健康和地球科学在内的不同领域中收集和研究。时空数据不同于关系数据,关系数据是在数据挖掘社区中开发了数十年的计算方法的,因为除了实际的度量/属性外,空间和时间属性均可用。这些属性的存在带来了需要解决的其他挑战。在数据挖掘社区中,研究时空数据的方法已研究了十多年。在本文中,我们对时空数据挖掘这一相对年轻的领域进行了广泛的调查。我们讨论了时空数据的不同类型以及在分析每个数据集的背景下出现的相关数据挖掘问题。根据所研究的数据挖掘问题的性质,我们将时空数据挖掘的文献分为六大类:聚类,预测学习,变更检测,频繁模式挖掘,异常检测和关系挖掘。我们讨论了每种类别中时空数据挖掘问题的各种形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号