首页> 美国卫生研究院文献>Taylor Francis Open Select >Quantifying the Impact of Unobserved Heterogeneity on Inference from the LogisticModel
【2h】

Quantifying the Impact of Unobserved Heterogeneity on Inference from the LogisticModel

机译:量化未观察到的异质性对Logistic推理的影响模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

While consequences of unobserved heterogeneity such as biased estimates of binary response regression models are generally known; quantifying these and awareness of situations with more serious impact on inference is however, remarkably lacking. This study examines the effect of unobserved heterogeneity on estimates of the standard logistic model. An estimate of bias was derived for the maximum likelihood estimator βˆ, and simulated data was used to investigate a range of situations that influence size of bias due to unobserved heterogeneity. It was found that the position of the probabilities, along the logistic curve, and the variance of the unobserved heterogeneity, were important determinants of size of bias.
机译:虽然众所周知,异质性的后果,例如对二进制响应回归模型的估计有偏差;但是,显然缺乏对这些进行量化的能力,并且对对推理有更严重影响的情况的意识不足。这项研究检验了未观察到的异质性对标准逻辑模型的估计的影响。得出了最大似然估计器的偏差估计值。 <移动者口音=“ true“> β ˆ ,并使用模拟数据研究了一系列因未观察到的异质性而影响偏差大小的情况。研究发现,概率的位置,沿逻辑曲线的位置以及未观察到的异质性的方差是偏差大小的重要决定因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号