首页> 美国卫生研究院文献>Springer Open Choice >Application of receptor models on water quality data in source apportionment in Kuantan River Basin
【2h】

Application of receptor models on water quality data in source apportionment in Kuantan River Basin

机译:受体模型在水质数据分析中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent techniques in the management of surface river water have been expanding the demand on the method that can provide more representative of multivariate data set. A proper technique of the architecture of artificial neural network (ANN) model and multiple linear regression (MLR) provides an advance tool for surface water modeling and forecasting. The development of receptor model was applied in order to determine the major sources of pollutants at Kuantan River Basin, Malaysia. Thirteen water quality parameters were used in principal component analysis (PCA) and new variables of fertilizer waste, surface runoff, anthropogenic input, chemical and mineral changes and erosion are successfully developed for modeling purposes. Two models were compared in terms of efficiency and goodness-of-fit for water quality index (WQI) prediction. The results show that APCS-ANN model gives better performance with high R2 value (0.9680) and small root mean square error (RMSE) value (2.6409) compared to APCS-MLR model. Meanwhile from the sensitivity analysis, fertilizer waste acts as the dominant pollutant contributor (59.82%) to the basin studied followed by anthropogenic input (22.48%), surface runoff (13.42%), erosion (2.33%) and lastly chemical and mineral changes (1.95%). Thus, this study concluded that receptor modeling of APCS-ANN can be used to solve various constraints in environmental problem that exist between water distribution variables toward appropriate water quality management.
机译:地表河水管理中的最新技术已经扩大了对该方法的需求,该方法可以提供更具代表性的多元数据集。人工神经网络(ANN)模型和多元线性回归(MLR)体系结构的适当技术为地表水建模和预测提供了先进的工具。应用受体模型的发展来确定马来西亚关丹河流域的主要污染物来源。在主要成分分析(PCA)中使用了13个水质参数,并成功地将肥料废物,地表径流,人为输入,化学和矿物变化以及侵蚀的新变量用于建模。在效率和拟合优度方面比较了两种模型的水质指数(WQI)预测。结果表明,与APCS-MLR模型相比,APCS-ANN模型具有更高的R 2 值(0.9680)和较小的均方根误差(RMSE)值(2.6409)。同时,从敏感性分析来看,化肥废物是所研究盆地的主要污染物贡献者(59.82%),其次是人为投入(22.48%),地表径流(13.42%),侵蚀(2.33%)以及化学和矿物变化( 1.95%)。因此,本研究得出结论,APCS-ANN的受体建模可用于解决环境问题中存在的各种问题,这些问题存在于配水变量之间,并需要适当的水质管理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号