首页> 美国卫生研究院文献>Springer Open Choice >Basic Features of a Cell Electroporation Model: Illustrative Behavior for Two Very Different Pulses
【2h】

Basic Features of a Cell Electroporation Model: Illustrative Behavior for Two Very Different Pulses

机译:细胞电穿孔模型的基本特征:两个非常不同的脉冲的说明性行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Science increasingly involves complex modeling. Here we describe a model for cell electroporation in which membrane properties are dynamically modified by poration. Spatial scales range from cell membrane thickness (5 nm) to a typical mammalian cell radius (10 μm), and can be used with idealized and experimental pulse waveforms. The model consists of traditional passive components and additional active components representing nonequilibrium processes. Model responses include measurable quantities: transmembrane voltage, membrane electrical conductance, and solute transport rates and amounts for the representative “long” and “short” pulses. The long pulse—1.5 kV/cm, 100 μs—evolves two pore subpopulations with a valley at  ∼ 5 nm, which separates the subpopulations that have peaks at  ∼ 1.5 and  ∼ 12 nm radius. Such pulses are widely used in biological research, biotechnology, and medicine, including cancer therapy by drug delivery and nonthermal physical tumor ablation by causing necrosis. The short pulse—40 kV/cm, 10 ns—creates 80-fold more pores, all small (  3 nm;  ∼ 1 nm peak). These nanosecond pulses ablate tumors by apoptosis. We demonstrate the model’s responses by illustrative electrical and poration behavior, and transport of calcein and propidium. We then identify extensions for expanding modeling capability. Structure-function results from MD can allow extrapolations that bring response specificity to cell membranes based on their lipid composition. After a pulse, changes in pore energy landscape can be included over seconds to minutes, by mechanisms such as cell swelling and pulse-induced chemical reactions that slowly alter pore behavior.Electronic supplementary materialThe online version of this article (doi:10.1007/s00232-014-9699-z) contains supplementary material, which is available to authorized users.
机译:科学越来越涉及复杂的建模。在这里,我们描述了一种用于细胞电穿孔的模型,其中通过渗透动态地改变了膜的性质。空间尺度范围从细胞膜厚度(5 nm)到典型的哺乳动物细胞半径(10μm),可以与理想化和实验性脉冲波形一起使用。该模型由传统的被动组件和代表非平衡过程的其他主动组件组成。模型响应包括可测量的量:跨膜电压,膜电导率和溶质传输速率以及代表“长”和“短”脉冲的量。长脉冲(1.5 kV / cm,100μs)演化出两个孔亚群,其谷底在〜5 nm处,从而将在1.5和12 nm半径处具有峰值的亚群分开。这样的脉冲被广泛用于生物学研究,生物技术和医学中,包括通过药物递送的癌症治疗和通过引起坏死的非热物理肿瘤消融。短脉冲-40 kV / cm,10 ns-产生了80倍以上的毛孔,全部都是小孔(<3 nm;〜1 nm峰值)。这些纳秒脉冲通过细胞凋亡消融肿瘤。我们通过说明性的电和渗透行为以及钙黄绿素和丙啶的传输来证明模型的响应。然后,我们确定用于扩展建模功能的扩展。 MD的结构功能结果可以外推,从而根据其脂质成分为细胞膜带来响应特异性。脉冲后,通过细胞膨胀和脉冲诱导的化学反应等机制可以缓慢改变孔的行为,从而在几秒至几分钟内包括孔隙能量分布的变化。电子补充材料本文的在线版本(doi:10.1007 / s00232- 014-9699-z)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号