首页> 美国卫生研究院文献>Springer Open Choice >Fuzzy-Logic Based Detection and Characterization of Junctions and Terminations in Fluorescence Microscopy Images of Neurons
【2h】

Fuzzy-Logic Based Detection and Characterization of Junctions and Terminations in Fluorescence Microscopy Images of Neurons

机译:基于模糊逻辑的神经元荧光显微图像中结点和末端的检测和表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Digital reconstruction of neuronal cell morphology is an important step toward understanding the functionality of neuronal networks. Neurons are tree-like structures whose description depends critically on the junctions and terminations, collectively called critical points, making the correct localization and identification of these points a crucial task in the reconstruction process. Here we present a fully automatic method for the integrated detection and characterization of both types of critical points in fluorescence microscopy images of neurons. In view of the majority of our current studies, which are based on cultured neurons, we describe and evaluate the method for application to two-dimensional (2D) images. The method relies on directional filtering and angular profile analysis to extract essential features about the main streamlines at any location in an image, and employs fuzzy logic with carefully designed rules to reason about the feature values in order to make well-informed decisions about the presence of a critical point and its type. Experiments on simulated as well as real images of neurons demonstrate the detection performance of our method. A comparison with the output of two existing neuron reconstruction methods reveals that our method achieves substantially higher detection rates and could provide beneficial information to the reconstruction process.
机译:神经元细胞形态的数字重建是迈向了解神经元网络功能的重要一步。神经元是树状结构,其描述主要取决于连接点和终止点(统称为临界点),因此正确定位和识别这些点是重建过程中的关键任务。在这里,我们为神经元的荧光显微镜图像中两种类型的临界点的集成检测和表征提供了一种全自动方法。鉴于我们目前的大多数研究都是基于培养的神经元,我们描述和评估了应用于二维(2D)图像的方法。该方法依赖于方向滤波和角度轮廓分析来提取关于图像中任意位置的主要流线的基本特征,并采用带有精心设计的规则的模糊逻辑来推理特征值,以便做出关于存在的明智决策。临界点及其类型。在模拟和真实神经元图像上进行的实验证明了我们方法的检测性能。与两种现有的神经元重建方法的输出结果进行比较后发现,我们的方法可以实现更高的检测率,并且可以为重建过程提供有益的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号