首页> 美国卫生研究院文献>Springer Open Choice >Structural reliability calculation method based on the dual neural network and direct integration method
【2h】

Structural reliability calculation method based on the dual neural network and direct integration method

机译:基于双神经网络和直接积分法的结构可靠度计算方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer–Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.
机译:由于反映了结构特征和轴承的实际情况,不确定性条件下的结构可靠性分析受到了工程界和学者的广泛关注。从可靠性理论的定义开始的直接积分方法很容易理解,但是在计算多个积分时仍然存在数学困难。因此,本文提出了一种用于计算多个积分的对偶神经网络方法。对偶神经网络由两个神经网络组成。神经网络A用于学习被积函数,而神经网络B用于模拟原始函数。根据网络输出与网络输入之间的导数关系,从神经网络A导出神经网络B。在此基础上,本文提出的方法利用归一化的性能函数克服了多重积分的困难,提高可靠性计算的准确性。将该方法与蒙特卡罗模拟方法,Hasofer-Lind方法,均值一阶二阶矩方法进行了比较,结果表明该方法是解决结构可靠度问题的一种有效,准确的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号