首页> 美国卫生研究院文献>Springer Open Choice >A priori SNR estimation and noise estimation for speech enhancement
【2h】

A priori SNR estimation and noise estimation for speech enhancement

机译:用于语音增强的先验SNR估计和噪声估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A priori signal-to-noise ratio (SNR) estimation and noise estimation are important for speech enhancement. In this paper, a novel modified decision-directed (DD) a priori SNR estimation approach based on single-frequency entropy, named DDBSE, is proposed. DDBSE replaces the fixed weighting factor in the DD approach with an adaptive one calculated according to change of single-frequency entropy. Simultaneously, a new noise power estimation approach based on unbiased minimum mean square error (MMSE) and voice activity detection (VAD), named UMVAD, is proposed. UMVAD adopts different strategies to estimate noise in order to reduce over-estimation and under-estimation of noise. UMVAD improves the classical statistical model-based VAD by utilizing an adaptive threshold to replace the original fixed one and modifies the unbiased MMSE-based noise estimation approach using an adaptive a priori speech presence probability calculated by entropy instead of the original fixed one. Experimental results show that DDBSE can provide greater noise suppression than DD and UMVAD can improve the accuracy of noise estimation. Compared to existing approaches, speech enhancement based on UMVAD and DDBSE can obtain a better segment SNR score and composite measure covl score, especially in adverse environments such as non-stationary noise and low-SNR.
机译:先验信噪比(SNR)估计和噪声估计对于语音增强很重要。本文提出了一种新的基于单频熵的改进的先导式信噪比估计决策方法,称为DDBSE。 DDBSE将DD方法中的固定加权因子替换为根据单频熵的变化而计算出的自适应加权因子。同时,提出了一种基于无偏最小均方误差(MMSE)和语音活动检测(VAD)的噪声功率估计方法,即UMVAD。 UMVAD采用不同的策略来估计噪声,以减少噪声的过高估计和过低估计。 UMVAD通过利用自适应阈值代替原始固定阈值来改进基于经典统计模型的VAD,并使用由熵计算的自适应先验语音存在概率代替原始固定阈值来修改基于无偏MMSE的噪声估计方法。实验结果表明,DDBSE可以提供比DD更大的噪声抑制,而UMVAD可以提高噪声估计的准确性。与现有方法相比,基于UMVAD和DDBSE的语音增强可以获得更好的段SNR分数和复合度量covl分数,尤其是在诸如非平稳噪声和低SNR的不利环境中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号