首页> 美国卫生研究院文献>Springer Open Choice >Neurophysiology of space travel: energetic solar particles cause cell type-specific plasticity of neurotransmission
【2h】

Neurophysiology of space travel: energetic solar particles cause cell type-specific plasticity of neurotransmission

机译:太空旅行的神经生理学:高能的太阳粒子引起神经传递的细胞类型特异性可塑性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the not too distant future, humankind will embark on one of its greatest adventures, the travel to distant planets. However, deep space travel is associated with an inevitable exposure to radiation fields. Space-relevant doses of protons elicit persistent disruptions in cognition and neuronal structure. However, whether space-relevant irradiation alters neurotransmission is unknown. Within the hippocampus, a brain region crucial for cognition, perisomatic inhibitory control of pyramidal cells (PCs) is supplied by two distinct cell types, the cannabinoid type 1 receptor (CB1)-expressing basket cells (CB1BCs) and parvalbumin (PV)-expressing interneurons (PVINs). Mice subjected to low-dose proton irradiation were analyzed using electrophysiological, biochemical and imaging techniques months after exposure. In irradiated mice, GABA release from CB1BCs onto PCs was dramatically increased. This effect was abolished by CB1 blockade, indicating that irradiation decreased CB1-dependent tonic inhibition of GABA release. These alterations in GABA release were accompanied by decreased levels of the major CB1 ligand 2-arachidonoylglycerol. In contrast, GABA release from PVINs was unchanged, and the excitatory connectivity from PCs to the interneurons also underwent cell type-specific alterations. These results demonstrate that energetic charged particles at space-relevant low doses elicit surprisingly selective long-term plasticity of synaptic microcircuits in the hippocampus. The magnitude and persistent nature of these alterations in synaptic function are consistent with the observed perturbations in cognitive performance after irradiation, while the high specificity of these changes indicates that it may be possible to develop targeted therapeutic interventions to decrease the risk of adverse events during interplanetary travel.Electronic supplementary materialThe online version of this article (doi:10.1007/s00429-016-1345-3) contains supplementary material, which is available to authorized users.
机译:在不太遥远的未来,人类将踏上其最伟大的冒险之一,即前往遥远的星球。但是,深空旅行不可避免地会暴露于辐射场。与空间有关的质子剂量引起认知和神经元结构的持续破坏。但是,与空间有关的照射是否会改变神经传递尚不清楚。在海马内,对于认知,锥体细胞的过抑制抑制控制至关重要的大脑区域由两种不同的细胞类型提供,表达大麻素的1型受体(CB1)的篮细胞(CB1BCs)和表达小白蛋白(PV)中间神经元(PVIN)。暴露后数月,使用电生理,生化和成像技术分析了低剂量质子辐照的小鼠。在受辐照的小鼠中,从CB1BCs释放到PC的GABA急剧增加。 CB1阻断消除了这种作用,表明辐照降低了CABA依赖性的GABA释放的滋补抑制作用。这些GABA释放的变化伴随着主要CB1配体2-花生四烯酸甘油酯水平的降低。相反,从PVINs释放的GABA并没有改变,从PC到中间神经元的兴奋性连接也经历了细胞类型特异性改变。这些结果表明,与空间有关的低剂量的高能带电粒子会引起海马突触微电路的惊人的选择性长期可塑性。这些突触功能改变的强度和持续性与辐射后观察到的认知功能扰动相一致,而这些改变的高度特异性表明,有可能开发针对性的治疗干预措施以降低星际间不良事件的风险电子补充材料本文的在线版本(doi:10.1007 / s00429-016-1345-3)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号