首页> 美国卫生研究院文献>Springer Open Choice >Handling hybrid and missing data in constraint-based causal discovery to study the etiology of ADHD
【2h】

Handling hybrid and missing data in constraint-based causal discovery to study the etiology of ADHD

机译:在基于约束的因果发现中处理混合数据和缺失数据以研究多动症的病因

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Causal discovery is an increasingly important method for data analysis in the field of medical research. In this paper, we consider two challenges in causal discovery that occur very often when working with medical data: a mixture of discrete and continuous variables and a substantial amount of missing values. To the best of our knowledge, there are no methods that can handle both challenges at the same time. In this paper, we develop a new method that can handle these challenges based on the assumption that data are missing at random and that continuous variables obey a non-paranormal distribution. We demonstrate the validity of our approach for causal discovery on simulated data as well as on two real-world data sets from a monetary incentive delay task and a reversal learning task. Our results help in the understanding of the etiology of attention-deficit/hyperactivity disorder (ADHD).Electronic supplementary materialThe online version of this article (doi:10.1007/s41060-016-0034-x) contains supplementary material, which is available to authorized users.
机译:因果发现是医学研究领域中越来越重要的数据分析方法。在本文中,我们考虑了因果关系发现中在处理医学数据时经常遇到的两个挑战:离散变量和连续变量的混合以及大量缺失值。据我们所知,没有方法可以同时应对这两个挑战。在本文中,我们基于一种假设,即数据随机丢失并且连续变量服从非超自然分布,我们开发了一种可以应对这些挑战的新方法。我们证明了我们的方法对模拟数据以及货币激励延迟任务和逆向学习任务的两个真实数据集上因果发现的有效性。我们的研究结果有助于了解注意力缺陷/多动障碍(ADHD)的病因。电子补充材料本文的在线版本(doi:10.1007 / s41060-016-0034-x)包含补充材料,可以通过授权获得用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号