首页> 美国卫生研究院文献>Springer Open Choice >Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis
【2h】

Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis

机译:基于标准差的精细多尺度模糊熵用于生物医学信号分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multiscale entropy (MSE) has been a prevalent algorithm to quantify the complexity of biomedical time series. Recent developments in the field have tried to alleviate the problem of undefined MSE values for short signals. Moreover, there has been a recent interest in using other statistical moments than the mean, i.e., variance, in the coarse-graining step of the MSE. Building on these trends, here we introduce the so-called refined composite multiscale fuzzy entropy based on the standard deviation (RCMFEσ) and mean (RCMFEμ) to quantify the dynamical properties of spread and mean, respectively, over multiple time scales. We demonstrate the dependency of the RCMFEσ and RCMFEμ, in comparison with other multiscale approaches, on several straightforward signal processing concepts using a set of synthetic signals. The results evidenced that the RCMFEσ and RCMFEμ values are more stable and reliable than the classical multiscale entropy ones. We also inspect the ability of using the standard deviation as well as the mean in the coarse-graining process using magnetoencephalograms in Alzheimer’s disease and publicly available electroencephalograms recorded from focal and non-focal areas in epilepsy. Our results indicated that when the RCMFEμ cannot distinguish different types of dynamics of a particular time series at some scale factors, the RCMFEσ may do so, and vice versa. The results showed that RCMFEσ-based features lead to higher classification accuracies in comparison with the RCMFEμ-based ones. We also made freely available all the Matlab codes used in this study at 10.7488/ds/1477.
机译:多尺度熵(MSE)已经成为量化生物医学时间序列复杂性的流行算法。该领域的最新发展已经尝试减轻短信号的不确定MSE值的问题。此外,最近对在MSE的粗粒度步骤中使用除均值即方差以外的其他统计矩感兴趣。在这些趋势的基础上,我们在此基于标准偏差(RCMFEσ)和均值(RCMFEμ)引入所谓的精细复合多尺度模糊熵,以分别量化多个时间尺度上的价差和均值的动力学特性。与其他多尺度方法相比,我们证明了RCMFEσ和RCMFEμ对使用一组合成信号的几种简单信号处理概念的依赖性。结果表明,RCMFEσ和RCMFEμ值比经典的多尺度熵值更稳定和可靠。我们还检查了使用阿尔茨海默氏病脑磁图和癫痫局灶性和非局灶性区域记录的可公开获得的脑电图在粗粒化过程中使用标准偏差和均值的能力。我们的结果表明,当RCMFEμ在某些比例因子上无法区分特定时间序列的不同类型的动力学时,RCMFEσ可以做到,反之亦然。结果表明,与基于RCMFEμ的特征相比,基于RCMFEσ的特征具有更高的分类精度。我们还以10.7488 / ds / 1477免费提供了本研究中使用的所有Matlab代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号