首页> 美国卫生研究院文献>Springer Open Choice >A numerical study of different projection-based model reduction techniques applied to computational homogenisation
【2h】

A numerical study of different projection-based model reduction techniques applied to computational homogenisation

机译:应用于计算均质化的不同基于投影的模型简化技术的数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computing the macroscopic material response of a continuum body commonly involves the formulation of a phenomenological constitutive model. However, the response is mainly influenced by the heterogeneous microstructure. Computational homogenisation can be used to determine the constitutive behaviour on the macro-scale by solving a boundary value problem at the micro-scale for every so-called macroscopic material point within a nested solution scheme. Hence, this procedure requires the repeated solution of similar microscopic boundary value problems. To reduce the computational cost, model order reduction techniques can be applied. An important aspect thereby is the robustness of the obtained reduced model. Within this study reduced-order modelling (ROM) for the geometrically nonlinear case using hyperelastic materials is applied for the boundary value problem on the micro-scale. This involves the Proper Orthogonal Decomposition (POD) for the primary unknown and hyper-reduction methods for the arising nonlinearity. Therein three methods for hyper-reduction, differing in how the nonlinearity is approximated and the subsequent projection, are compared in terms of accuracy and robustness. Introducing interpolation or Gappy-POD based approximations may not preserve the symmetry of the system tangent, rendering the widely used Galerkin projection sub-optimal. Hence, a different projection related to a Gauss-Newton scheme (Gauss-Newton with Approximated Tensors- GNAT) is favoured to obtain an optimal projection and a robust reduced model.
机译:计算连续体的宏观物质响应通常涉及现象学本构模型的制定。但是,响应主要受异质微观结构的影响。通过对嵌套解决方案中每个所谓的宏观材料点在微观尺度上求解边界值问题,可以使用计算均匀化来确定宏观尺度上的本构行为。因此,此过程需要重复解决相似的微观边界值问题。为了减少计算成本,可以应用模型降阶技术。因此,重要的方面是所获得的简化模型的鲁棒性。在这项研究中,使用超弹性材料对几何非线性情况的降阶建模(ROM)用于微观尺度的边值问题。这涉及针对主要未知数的正确正交分解(POD)和针对产生的非线性的超还原方法。其中,在精度和鲁棒性方面比较了三种用于超约简的方法,它们在非线性的近似方式和后续投影方面有所不同。引入内插法或基于Gappy-POD的近似值可能无法保持系统切线的对称性,从而使广泛使用的Galerkin投影次优。因此,有利于与高斯-牛顿方案(具有近似张量的牛顿-牛顿-GNAT)有关的不同投影以获得最优投影和鲁棒的简化模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号