首页> 美国卫生研究院文献>Springer Open Choice >Redox-stat bioreactors for elucidating mobilisation mechanisms of trace elements: an example of As-contaminated mining soils
【2h】

Redox-stat bioreactors for elucidating mobilisation mechanisms of trace elements: an example of As-contaminated mining soils

机译:氧化还原静态生物反应器用于阐明微量元素的动员机制:一个被As污染的采矿土壤的例子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The environmental fate of major (e.g. C, N, S, Fe and Mn) and trace (e.g. As, Cr, Sb, Se and U) elements is governed by microbially catalysed reduction-oxidation (redox) reactions. Mesocosms are routinely used to elucidate trace metal fate on the basis of correlations between biogeochemical proxies such as dissolved element concentrations, trace element speciation and dissolved organic matter. However, several redox processes may proceed simultaneously in natural soils and sediments (particularly, reductive Mn and Fe dissolution and metal/metalloid reduction), having a contrasting effect on element mobility. Here, a novel redox-stat (Rcont) bioreactor allowed precise control of the redox potential (159 ± 11 mV, ~ 2 months), suppressing redox reactions thermodynamically favoured at lower redox potential (i.e. reductive mobilisation of Fe and As). For a historically contaminated mining soil, As release could be attributed to desorption of arsenite [As(III)] and Mn reductive dissolution. By contrast, the control bioreactor (Rnat, with naturally developing redox potential) showed almost double As release (337 vs. 181 μg g−1) due to reductive dissolution of Fe (1363 μg g−1 Fe2+ released; no Fe2+ detected in Rcont) and microbial arsenate [As(V)] reduction (189 μg g−1 released vs. 46 μg g−1 As(III) in Rcont). A redox-stat bioreactor thus represents a versatile tool to study processes underlying mobilisation and sequestration of other trace elements as well.Electronic supplementary materialThe online version of this article (10.1007/s00253-018-9165-4) contains supplementary material, which is available to authorized users.
机译:主要元素(例如C,N,S,Fe和Mn)和痕量元素(例如As,Cr,Sb,Se和U)的环境命运受微生物催化的还原-氧化(redox)反应控制。通常根据生物地​​球化学代理之间的相关性(例如溶解元素浓度,痕量元素形态和溶解有机物),使用介观来阐明痕量金属的命运。但是,几种氧化还原过程可能会在天然土壤和沉积物中同时进行(特别是还原性的Mn和Fe溶解以及金属/准金属还原),这对元素迁移率产生了相反的影响。在这里,一种新型的氧化还原稳态(Rcont)生物反应器可以精确控制氧化还原电势(159±11 mV,〜2个月),抑制了热力学上在较低氧化还原电势下有利的氧化还原反应(即,Fe和As的还原动员)。对于历史上受污染的采矿土壤,As的释放可能归因于砷[As(III)]的解吸和Mn的还原溶解。相比之下,由于Fe的还原溶解(1363μgg ),对照生物反应器(Rnat,具有自然产生的氧化还原电位)显示几乎两倍的As释放(337比181μggsup-1)。 −1 Fe 2 + 释放;在Rcont中未检测到Fe 2 + )和微生物砷酸盐[As(V)]降低(189μgg 释放了-1 与Rcont中的46μgg -1 As(III))。因此,氧化还原状态生物反应器代表了一种研究其他微量元素的动员和隔离过程的多功能工具。电子补充材料本文的在线版本(10.1007 / s00253-018-9165-4)包含补充材料,可以通过以下途径获得给授权用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号