首页> 美国卫生研究院文献>Springer Open Choice >Characterizing belief bias in syllogistic reasoning: A hierarchical Bayesian meta-analysis of ROC data
【2h】

Characterizing belief bias in syllogistic reasoning: A hierarchical Bayesian meta-analysis of ROC data

机译:在三段论推理中表征信念偏见:ROC数据的分层贝叶斯元分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The belief-bias effect is one of the most-studied biases in reasoning. A recent study of the phenomenon using the signal detection theory (SDT) model called into question all theoretical accounts of belief bias by demonstrating that belief-based differences in the ability to discriminate between valid and invalid syllogisms may be an artifact stemming from the use of inappropriate linear measurement models such as analysis of variance (Dube et al., Psychological Review, 117(3), 831–863, ). The discrepancy between Dube et al.’s, Psychological Review, 117(3), 831–863 () results and the previous three decades of work, together with former’s methodological criticisms suggests the need to revisit earlier results, this time collecting confidence-rating responses. Using a hierarchical Bayesian meta-analysis, we reanalyzed a corpus of 22 confidence-rating studies (N = 993). The results indicated that extensive replications using confidence-rating data are unnecessary as the observed receiver operating characteristic functions are not systematically asymmetric. These results were subsequently corroborated by a novel experimental design based on SDT’s generalized area theorem. Although the meta-analysis confirms that believability does not influence discriminability unconditionally, it also confirmed previous results that factors such as individual differences mediate the effect. The main point is that data from previous and future studies can be safely analyzed using appropriate hierarchical methods that do not require confidence ratings. More generally, our results set a new standard for analyzing data and evaluating theories in reasoning. Important methodological and theoretical considerations for future work on belief bias and related domains are discussed.
机译:信念偏差效应是推理中研究最多的偏差之一。最近使用信号检测理论(SDT)模型对该现象进行的研究,通过证明基于信念的区分有效和无效三段论能力的差异可能是源自使用信不合适的线性测量模型,例如方差分析(Dube等人,《心理评论》,117(3),831–863,)。 Dube等人的《心理评论》,第117(3)号,第831–863页()的结果与前三十年的研究结果之间的差异,以及前者的方法论批评表明,有必要重新审视早期的结果,这次收集了信心-评分回应。使用分层贝叶斯荟萃分析,我们重新分析了22个置信度评估研究的语料库(N = 993)。结果表明,无需使用置信度数据进行大量复制,因为观察到的接收器工作特性函数并非系统地不对称。这些结果随后被基于SDT的广义面积定理的新颖实验设计所证实。尽管荟萃分析证实可信度不会无条件地影响可识别性,但它也证实了先前的结果,即个体差异等因素会影响识别效果。要点是,可以使用不需要置信度等级的适当分层方法来安全地分析来自先前和将来研究的数据。更广泛地说,我们的结果为分析数据和评估推理理论设定了新的标准。讨论了有关信念偏见和相关领域未来工作的重要方法和理论考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号