首页> 美国卫生研究院文献>Springer Open Choice >A new method based on the manifold-alternative approximating for low-rank matrix completion
【2h】

A new method based on the manifold-alternative approximating for low-rank matrix completion

机译:基于流形-替代近似的低秩矩阵完成的新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a new method is proposed for low-rank matrix completion which is based on the least squares approximating to the known elements in the manifold formed by the singular vectors of the partial singular value decomposition alternatively. The method can achieve a reduction of the rank of the manifold by gradually reducing the number of the singular value of the thresholding and get the optimal low-rank matrix. It is proven that the manifold-alternative approximating method is convergent under some conditions. Furthermore, compared with the augmented Lagrange multiplier and the orthogonal rank-one matrix pursuit algorithms by random experiments, it is more effective as regards the CPU time and the low-rank property.
机译:在本文中,提出了一种新的低秩矩阵完成方法,该方法基于最小二乘近似近似于由部分奇异值分解的奇异矢量形成的流形中的已知元素。该方法可以通过逐渐减少阈值的奇异值的数量并获得最优的低秩矩阵来降低流形的秩。证明了流形-交替逼近方法在某些条件下是收敛的。此外,通过随机实验,与增强型拉格朗日乘数和正交秩一矩阵追踪算法相比,在CPU时间和低秩属性方面更为有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号