首页> 美国卫生研究院文献>Springer Open Choice >Diode laser photoacoustic spectroscopy of CO2 H2S and O2 in a differential Helmholtz resonator for trace gas analysis in the biosciences and petrochemistry
【2h】

Diode laser photoacoustic spectroscopy of CO2 H2S and O2 in a differential Helmholtz resonator for trace gas analysis in the biosciences and petrochemistry

机译:差分亥姆霍兹共振器中CO2H2S和O2的二极管激光光声光谱法用于生物科学和石油化学中的痕量气体分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Photoacoustic spectroscopy in a differential Helmholtz resonator has been employed with near-IR and red diode lasers for the detection of CO2, H2S and O2 in 1 bar of air/N2 and natural gas, in static and flow cell measurements. With the red distributed feedback (DFB) diode laser, O2 can be detected at 764.3 nm with a noise equivalent detection limit of 0.60 mbar (600 ppmv) in 1 bar of air (35-mW laser, 1-s integration), corresponding to a normalised absorption coefficient α = 2.2 × 10−8 cm−1 W s1/2. Within the tuning range of the near-IR DFB diode laser (6357–6378 cm−1), CO2 and H2S absorption features can be accessed, with a noise equivalent detection limit of 0.160 mbar (160 ppmv) CO2 in 1 bar N2 (30-mW laser, 1-s integration), corresponding to a normalised absorption coefficient α = 8.3 × 10−9 cm−1 W s1/2. Due to stronger absorptions, the noise equivalent detection limit of H2S in 1 bar N2 is 0.022 mbar (22 ppmv) at 1-s integration time. Similar detection limits apply to trace impurities in 1 bar natural gas. Detection limits scale linearly with laser power and with the square root of integration time. At 16-s total measurement time to obtain a spectrum, a noise equivalent detection limit of 40 ppmv CO2 is obtained after a spectral line fitting procedure, for example. Possible interferences due to weak water and methane absorptions have been discussed and shown to be either negligible or easy to correct. The setup has been used for simultaneous in situ monitoring of O2, CO2 and H2S in the cysteine metabolism of microbes (E. coli), and for the analysis of CO2 and H2S impurities in natural gas. Due to the inherent signal amplification and noise cancellation, photoacoustic spectroscopy in a differential Helmholtz resonator has a great potential for trace gas analysis, with possible applications including safety monitoring of toxic gases and applications in the biosciences and for natural gas analysis in petrochemistry. Graphical abstract
机译:差分亥姆霍兹共振器中的光声光谱已与近红外和红色二极管激光器一起用于在静态和流通池测量中检测空气/ N2和天然气的1 bar中的CO2,H2S和O2。使用红色分布式反馈(DFB)二极管激光器,可以在1 bar的空气中(35 mW激光器,集成1秒)在764.3 nm处检测O2,噪声等效检测极限为0.60 mbar(600 ppmv)。归一化吸收系数α= 2.2×10 −8 cm -1 W ss 1/2 。在近红外DFB二极管激光器的调谐范围内(6357–6378 cm -1 ),可以使用CO2和H2S吸收功能,等效噪声检测极限为0.160 mbar(160 ppmv) 1 bar N2中的CO2(激光,30mW,1秒积分),对应于归一化吸收系数α= 8.3×10 −9 cm -1 Wss < sup> 1/2 。由于吸收能力更强,因此在1秒积分时间内,1 bar N2中H2S的噪声当量检测极限为0.022 mbar(22 ppmv)。类似的检测限适用于1 bar天然气中的痕量杂质。检测极限与激光功率和积分时间的平方根成线性比例关系。在获得光谱的总测量时间为16秒时,例如,在进行光谱线拟合程序后,获得了40 ppmv CO2的噪声当量检测极限。已经讨论了由于水分和甲烷吸收较弱而可能产生的干扰,并且可以忽略不计或易于纠正。该装置已用于同时原位监测微生物(大肠杆菌)的半胱氨酸代谢过程中的O2,CO2和H2S,并用于分析天然气中的CO2和H 2 杂质。由于固有的信号放大和噪声消除,差分亥姆霍兹谐振器中的光声光谱技术在痕量气体分析方面具有巨大的潜力,其可能的应用包括对有毒气体的安全监控以及在生物科学中的应用以及在石油化学中的天然气分析。 <!-fig ft0-> <!-fig @ position =“ position” anchor“ == f4-> <!-fig mode =” anchred“ f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> <!-caption a7->图形摘要

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号