首页> 美国卫生研究院文献>SAS Journal >Osteoconductive carriers for integrated bone repair
【2h】

Osteoconductive carriers for integrated bone repair

机译:用于骨修复的骨传导载体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Successful bone repair is judged in achieving restitution of space and mechanical integrity, and in regaining function. When the biology or anatomy are insufficient to attain a full repair, therapeutic use of graft material has been used to omit compliance features such as strain tolerance, reduced stiffness, and attenuated strength, and instead promote primary or membranous-type bone formation within the physical approximation of a graft material. The challenge of most conductive materials is that they emerge from a static platform and in placement force the living system to adapt to placement, dimension, different properties, and eventually are only successful in degradation and replacement, or in integration. The synergy and interdependency between adhesion, ECM, and proteolysis are important concepts that must be understood to engineer scaffolds capable of holding up to standards which are more than cell decoration. Moreover, the reactive specificity to loading, degradation, therapeutic delivery during absorption remains a key aim of both academic and industrial designs. Achieving conductivity comes with challenges of best fit integration, delivery, and in integrated modeling. The more liquid is the delivery, the more modular the components, and adaptive the matrix to meeting the intended application, the more likely that the conductivity will not be excluded by the morphology of the injury site. Considerations for osteoconductive materials for bone repair and replacement have developed conceptually and advanced parallel with a better understanding of not only bone biology but of materials science. First models of material replacements utilized a reductionist-constructionist logic; define the constituents of the material in terms of its morphology and chemical composition, and then engineer material with similar content and properties as a means of accommodating a replacement. Unfortunately for biologic systems, empiric formulation is insufficient to promote adequate integration in a timely fashion. Future matrices will need to translate their biological surfaces as more than a scaffold to be decorated with cells. Conductivity will be improved by formulations that enhance function, further extended from understanding what composition best suits cell attachment, and be adopted by conveniences of delivery that meet those criteria.
机译:判断成功的骨修复可实现空间和机械完整性的恢复,以及恢复功能。当生物学或解剖学不足以进行全面修复时,已经使用了治疗性移植材料来省略顺应性特征,例如应变耐受性,降低的刚度和减弱的强度,而是促进身体内的原发或膜型骨形成移植材料的近似值。大多数导电材料的挑战在于它们会从静态平台中浮出,并且在放置时会迫使生命系统适应放置,尺寸,不同的特性,最终只能在降解和替换或集成方面取得成功。粘附力,ECM和蛋白水解之间的协同作用和相互依存关系是重要的概念,对于工程设计能够支撑超过细胞装饰标准的支架而言,必须理解这些重要概念。此外,对吸收过程中负载,降解,治疗性递送的反应特异性仍然是学术和工业设计的主要目标。实现电导率面临着最佳拟合集成,交付和集成建模的挑战。输送的液体越多,组分越模块化,并且矩阵能够满足预期的应用,则电导率可能不会被损伤部位的形态所排除。在概念上发展了用于骨修复和置换的骨传导材料的考虑,并与对骨生物学和材料科学的更好理解相平行。最初的材料替代模型采用了还原主义-建构主义的逻辑。根据材料的形态和化学成分定义材料的成分,然后设计具有相似含量和特性的材料作为适应替换的方法。不幸的是,对于生物系统而言,经验公式化不足以促进及时的充分整合。未来的基质将需要将其生物学表面转化为比用细胞装饰的支架更多的形式。可以通过增强功能的配方来改善电导率,还可以从了解哪种成分最适合细胞附着的角度进一步扩展,并通过满足这些标准的便利运送方式采用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号