首页> 美国卫生研究院文献>SAGE Choice >The Impact of Different Screening Model Structures on Cervical Cancer Incidence and Mortality Predictions: The Maximum Clinical Incidence Reduction (MCLIR) Methodology
【2h】

The Impact of Different Screening Model Structures on Cervical Cancer Incidence and Mortality Predictions: The Maximum Clinical Incidence Reduction (MCLIR) Methodology

机译:不同筛查模型结构对宫颈癌发病率和死亡率预测的影响:最大临床发病率降低(MCLIR)方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

. To interpret cervical cancer screening model results, we need to understand the influence of model structure and assumptions on cancer incidence and mortality predictions. Cervical cancer cases and deaths following screening can be attributed to 1) (precancerous or cancerous) disease that occurred after screening, 2) disease that was present but not screen detected, or 3) disease that was screen detected but not successfully treated. We examined the relative contributions of each of these using 4 Cancer Intervention and Surveillance Modeling Network (CISNET) models. . The maximum clinical incidence reduction (MCLIR) method compares changes in the number of clinically detected cervical cancers and mortality among 4 scenarios: 1) no screening, 2) one-time perfect screening at age 45 that detects all existing disease and delivers perfect (i.e., 100% effective) treatment of all screen-detected disease, 3) one-time realistic-sensitivity cytological screening and perfect treatment of all screen-detected disease, and 4) one-time realistic-sensitivity cytological screening and realistic-effectiveness treatment of all screen-detected disease. . Predicted incidence reductions ranged from 55% to 74%, and mortality reduction ranged from 56% to 62% within 15 years of follow-up for scenario 4 across models. The proportion of deaths due to disease not detected by screening differed across the models (21%–35%), as did the failure of treatment (8%–16%) and disease occurring after screening (from 1%–6%). . The MCLIR approach aids in the interpretation of variability across model results. We showed that the reasons why screening failed to prevent cancers and deaths differed between the models. This likely reflects uncertainty about unobservable model inputs and structures; the impact of this uncertainty on policy conclusions should be examined via comparing findings from different well-calibrated and validated model platforms.
机译:。要解释宫颈癌筛查模型的结果,我们需要了解模型结构和假设对癌症发病率和死亡率预测的影响。筛查后的宫颈癌病例和死亡可归因于1)筛查后发生的(癌前或癌性)疾病,2)存在但未筛查到的疾病或3)被筛查但未成功治疗的疾病。我们使用4种癌症干预和监测模型网络(CISNET)模型检查了每种方法的相对贡献。 。最大临床发病率降低(MCLIR)方法比较了4种情况下临床检测出的子宫颈癌数量和死亡率的变化:1)不进行筛查,2)在45岁时进行一次完美筛查,该筛查可检测出所有现有疾病并达到理想水平(即,100%有效)对所有筛查发现的疾病的治疗,3)对所有筛查发现的疾病进行一次一次性的现实敏感性细胞学筛查和完美治疗,以及4)对所有筛查到的疾病进行一次一次性的现实敏感性细胞学筛查和现实效果治疗所有筛查到的疾病。 。在模型4中,在随访的15年内,预计的发病率降低幅度为55%至74%,死亡率降低范围为56%至62%。在两种模型中,未通过筛查发现的疾病导致的死亡比例不同(21%–35%),治疗失败(8%–16%)和筛查后发生的疾病(从1%–6%)也不同。 。 MCLIR方法有助于解释模型结果之间的变异性。我们证明了筛查未能预防癌症和死亡的原因在两个模型之间是不同的。这可能反映了有关不可观察的模型输入和结构的不确定性;这种不确定性对政策结论的影响应该通过比较来自不同的经过良好校准和验证的模型平台的研究结果来检验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号