首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS PlusFrom the Cover: A gating mechanism of pentameric ligand-gated ion channels
【2h】

PNAS PlusFrom the Cover: A gating mechanism of pentameric ligand-gated ion channels

机译:从封面开始:五聚体配体门控离子通道的门控机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communication in the nervous system and are involved in fundamental processes such as attention, learning, and memory. They are oligomeric protein assemblies that convert a chemical signal into an ion flux through the postsynaptic membrane, but the molecular mechanism of gating ions has remained elusive. Here, we present atomistic molecular dynamics simulations of the prokaryotic channels from Gloeobacter violaceus (GLIC) and Erwinia chrysanthemi (ELIC), whose crystal structures are thought to represent the active and the resting states of pLGICs, respectively, and of the eukaryotic glutamate-gated chloride channel from Caenorhabditis elegans (GluCl), whose open-channel structure was determined complexed with the positive allosteric modulator ivermectin. Structural observables extracted from the trajectories of GLIC and ELIC are used as progress variables to analyze the time evolution of GluCl, which was simulated in the absence of ivermectin starting from the structure with bound ivermectin. The trajectory of GluCl with ivermectin removed shows a sequence of structural events that couple agonist unbinding from the extracellular domain to ion-pore closing in the transmembrane domain. Based on these results, we propose a structural mechanism for the allosteric communication leading to deactivation/activation of the GluCl channel. This model of gating emphasizes the coupling between the quaternary twisting and the opening/closing of the ion pore and is likely to apply to other members of the pLGIC family.
机译:五聚体配体门控离子通道(pLGIC)在神经系统的细胞间通讯中起着核心作用,并参与基本过程,例如注意力,学习和记忆。它们是寡聚蛋白装配体,可将化学信号转换为通过突触后膜的离子通量,但门控离子的分子机制仍然难以捉摸。在这里,我们介绍了紫球菌(GLIC)和金黄色欧文氏菌(ELIC)的原核通道的原子分子动力学模拟,认为它们的晶体结构分别代表了pLGICs的活性和静止状态,以及谷氨酸门控的真核生物秀丽隐杆线虫(GluCl)的氯离子通道,确定其开放通道结构与正变构调节剂伊维菌素复合。从GLIC和ELIC轨迹中提取的结构可观察物用作进展变量,以分析GluCl的时间演化,这是在没有伊维菌素的情况下从结合伊维菌素的结构开始模拟的。去除了伊维菌素的GluCl的轨迹显示了一系列的结构事件,这些事件将激动剂从细胞外结构域解除结合到跨膜结构域中的离子孔封闭。基于这些结果,我们提出了导致变构通讯的失活/激活GluCl通道的结构机制。这种门控模型强调了四级扭曲与离子孔的打开/关闭之间的耦合,并且很可能适用于pLGIC系列的其他成员。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号