首页> 美国卫生研究院文献>PLoS Computational Biology >A novel algorithm identifies stress-induced alterations in mitochondrial connectivity and inner membrane structure from confocal images
【2h】

A novel algorithm identifies stress-induced alterations in mitochondrial connectivity and inner membrane structure from confocal images

机译:一种新的算法从共焦图像中识别线粒体连接性和内膜结构的应力诱导变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mitochondria exist as a highly interconnected network that is exquisitely sensitive to variations in nutrient availability, as well as a large array of cellular stresses. Changes in length and connectivity of this network, as well as alterations in the mitochondrial inner membrane (cristae), regulate cell fate by controlling metabolism, proliferation, differentiation, and cell death. Given the key roles of mitochondrial dynamics, the process by which mitochondria constantly fuse and fragment, the measure of mitochondrial length and connectivity provides crucial information on the health and activity of various cell populations. However, despite the importance of accurately measuring mitochondrial networks, the tools required to rapidly and accurately provide this information are lacking. Here, we developed a novel probabilistic approach to automatically measure mitochondrial length distribution and connectivity from confocal images. This method accurately identified mitochondrial changes caused by starvation or the inhibition of mitochondrial function. In addition, we successfully used the algorithm to measure changes in mitochondrial inner membrane/matrix occurring in response to Complex III inhibitors. As cristae rearrangements play a critical role in metabolic regulation and cell survival, this provides a rapid method to screen for proteins or compounds affecting this process. The algorithm will thus provide a robust tool to dissect the molecular mechanisms underlying the key roles of mitochondria in the regulation of cell fate.
机译:线粒体作为高度相互连接的网络存在,对养分利用率和大量细胞胁迫非常敏感。该网络的长度和连通性的改变,以及线粒体内膜(cristae)的改变,都通过控制新陈代谢,增殖,分化和细胞死亡来调节细胞命运。考虑到线粒体动力学的关键作用,线粒体不断融合和断裂的过程,线粒体长度和连通性的度量,可提供有关各种细胞群健康和活动的重要信息。但是,尽管精确测量线粒体网络很重要,但仍缺乏快速而准确地提供此信息所需的工具。在这里,我们开发了一种新颖的概率方法来自动测量共聚焦图像的线粒体长度分布和连通性。该方法可以准确地识别由于饥饿或线粒体功能抑制引起的线粒体变化。此外,我们成功地使用该算法来测量响应复合物III抑制剂而发生的线粒体内膜/基质的变化。由于cr的重排在代谢调节和细胞存活中起关键作用,因此提供了一种快速方法来筛选影响此过程的蛋白质或化合物。因此,该算法将提供一个强大的工具来剖析线粒体在调控细胞命运中的关键作用的分子机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号