首页> 外文学位 >Complexity constrained three-dimensional skeletonization algorithms for automated extraction of dendrites and spines from fluorescence confocal images.
【24h】

Complexity constrained three-dimensional skeletonization algorithms for automated extraction of dendrites and spines from fluorescence confocal images.

机译:复杂性限制了三维骨架化算法,用于从荧光共聚焦图像中自动提取树突和刺。

获取原文
获取原文并翻译 | 示例

摘要

The structure of neuronal dendrites and dendritic spines are linked to many important aspects of brain cognitive functions. Current techniques are not adequately developed in accuracy, efficiency and automation for detection of dendritic morphology and spine geometry. It remains a difficult task for algorithms to reduce the false positive and classify the clusters into spines and other protrusions. One challenge is the smallness of these structures compared to the achievable resolution of optical microscopes; A second challenge relates to achievable signal quality with fluorescence imaging. The signal to noise ratio and contrast can be poor especially when live neurons are being imaged, or when the slices are thick; A third challenge relates to the structural complexity of spiny dendrites, especially when they are inter-twined in a complex manner; Finally, the high degree of variability exhibited by neuroanatomic structures (morphological and appearance variability compounded by imaging system variability) make it difficult to robustly model spines, and cause the detection to be ambiguous.;We present a minimum description length (MDL) based algorithm to analyze the morphologic variation of dendritic branching and spine density/distribution on 3D confocal microscopy images. The algorithm can take into consideration spine prior knowledge and spine spatial correlation and translate them into model description length. The algorithm estimates the model complexity and model parameters altogether in an optimization problem. The dendrite and spine extraction is derived when the optimal model with proper complexity and coverage makes its MDL criterion to reach minimum.;Instead of realizing segmentation before the central line extraction, we can work directly on the intensity images without discarding original image intensities that are informative to the skeletonization. An algorithm utilizing the gradient vector field to locate the skeletons of the tubular objects is applied after an anisotropic diffusion process. In order to explore the dendritic structure from the 3D skeleton, a minimum spanning tree algorithm based on intensity weighted edges (IW-MST) is employed. Graph morphology methods are used to further adjust the skeleton structure and remove spurs and non-spine-related branches.;The complexity constrained models are developed and optimized for the dendritic backbones (neuron main dendrite structure) and tree branches in neuronal structure. The dendritic backbones are extracted as the primary structure of neuron. Its representation in MDL model is based on B-spline functions with smooth curves of low degree, and with optimal intervals and knots. The secondary neuronal structures, dendritic spines, are derived as attachments to the dendrite backbones. The spine models comprise both conciseness and coverage in the MDL criterion and take prior knowledge into the model consideration.;The dendrite and spine morphological structure can be further analyzed with level set methods. By creating the surface models for the dendrites and spines separately from both the intensity 3D images and the skeleton points, we can perform various measurement of dendrites and spines, such as size, radius, volume, etc.;Experimental results on multiple datasets show the efficiency of our algorithms on different sources (from UCLA, Caltech, MBF Inc.) of real 3D fluorescence images and time series. These include 30 datasets in 8 different groups or time series. On confocal microscopy images of various scales, contrasts, noise levels, we have achieved the detection of spines with false negative less than 10% in most datasets (the average is 7.1% on all 30 datasets), and at the same time low false positive rate of about 11.8% on average.
机译:神经元树突和树突棘的结构与大脑认知功能的许多重要方面有关。目前,在检测树突形态和脊柱几何形状的准确性,效率和自动化方面还没有得到足够的发展。对于算法而言,减少假阳性并将聚类分类为刺和其他突起仍然是一项艰巨的任务。挑战之一是与光学显微镜可实现的分辨率相比,这些结构的体积很小。第二个挑战涉及荧光成像可达到的信号质量。信噪比和对比度可能很差,尤其是在对活神经元成像或切片较厚时;第三个挑战涉及棘突树突的结构复杂性,尤其是当它们以复杂方式缠绕在一起时。最后,神经解剖结构所表现出的高度变异性(成像系统变异性导致形态和外观变异性加重)使得难以对刺进行稳健建模,并导致检测模棱两可。;我们提出了一种基于最小描述长度(MDL)的算法在3D共聚焦显微镜图像上分析树突分支和脊柱密度/分布的形态变化。该算法可以考虑脊柱先验知识和脊柱空间相关性,并将它们转换为模型描述长度。该算法估计优化问题中的模型复杂度和模型参数。当具有适当复杂性和覆盖率的最优模型的MDL准则达到最小时,就可以导出树状体和脊柱提取;代替在中心线提取之前实现分割,我们可以直接在强度图像上进行工作,而无需丢弃原始图像强度。有益于骨骼化。在各向异性扩散过程之后,应用了一种利用梯度矢量场来定位管状物体骨架的算法。为了从3D骨架中探索树状结构,采用了基于强度加权边的最小生成树算法(IW-MST)。使用图形态学方法进一步调整骨骼结构,去除杂散和非脊柱相关分支。针对树突状主干(神经元主要树突结构)和神经元结构中的树枝,开发并优化了复杂性约束模型。树突状骨架被提取为神经元的主要结构。它在MDL模型中的表示基于B样条函数,该函数具有低度的平滑曲线,并具有最佳的间隔和节。二级神经元结构,树突棘,是作为对树突骨架的附着而获得的。脊柱模型既包含MDL标准中的简洁性又包括覆盖范围,并且将先验知识纳入模型考虑范围。可以使用水平集方法进一步分析枝晶和脊柱的形态结构。通过分别从强度3D图像和骨架点创建树突和刺的表面模型,我们可以执行树突和刺的各种测量,例如大小,半径,体积等;多个数据集上的实验结果表明我们的算法对真实3D荧光图像和时间序列的不同来源(来自UCLA,Caltech,MBF Inc.)的效率。其中包括8个不同组或时间序列的30个数据集。在各种规模,对比度,噪声水平的共聚焦显微镜图像上,我们已经实现了在大多数数据集中检出假阴性少于10%的刺(在所有30个数据集中平均为7.1%),同时检出假阳性的比率低平均约为11.8%。

著录项

  • 作者

    Yuan, Xiaosong.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:37:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号