首页> 美国卫生研究院文献>PLoS Computational Biology >Combinatorial Pattern Discovery Approach for the Folding Trajectory Analysis of a β-Hairpin
【2h】

Combinatorial Pattern Discovery Approach for the Folding Trajectory Analysis of a β-Hairpin

机译:β-发夹折叠轨迹分析的组合模式发现方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study of protein folding mechanisms continues to be one of the most challenging problems in computational biology. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates, such as the fraction of native contacts, the radius of gyration, RMSD from the native structure, and so on. In this paper, we present a combinatorial pattern discovery approach toward understanding the global state changes during the folding process. This is a first step toward an unsupervised (and perhaps eventually automated) approach toward identification of global states. The approach is based on computing biclusters (or patterned clusters)—each cluster is a combination of various reaction coordinates, and its signature pattern facilitates the computation of the Z-score for the cluster. For this discovery process, we present an algorithm of time complexity c∈RO((N + nm) log n), where N is the size of the output patterns and (n × m) is the size of the input with n time frames and m reaction coordinates. To date, this is the best time complexity for this problem. We next apply this to a β-hairpin folding trajectory and demonstrate that this approach extracts crucial information about protein folding intermediate states and mechanism. We make three observations about the approach: (1) The method recovers states previously obtained by visually analyzing free energy surfaces. (2) It also succeeds in extracting meaningful patterns and structures that had been overlooked in previous works, which provides a better understanding of the folding mechanism of the β-hairpin. These new patterns also interconnect various states in existing free energy surfaces versus different reaction coordinates. (3) The approach does not require calculating the free energy values, yet it offers an analysis comparable to, and sometimes better than, the methods that use free energy landscapes, thus validating the choice of reaction coordinates. (An abstract version of this work was presented at the 2005 Asia Pacific Bioinformatics Conference [].)
机译:蛋白质折叠机制的研究仍然是计算生物学中最具挑战性的问题之一。当前,蛋白质折叠机制的特征通常是通过计算自由能态与各种反应坐标的关系,例如自然接触的比例,回转半径,来自自然结构的RMSD等。在本文中,我们提出了一种组合模式发现方法,用于了解折叠过程中的全局状态变化。这是朝着无监督(也许最终自动化)的全球状态识别方法迈出的第一步。该方法基于计算双聚类(或带图案的聚类)-每个聚类是各种反应坐标的组合,并且其签名模式有助于聚类的Z分数的计算。对于此发现过程,我们提出一种时间复杂度为c∈RO((N + nm)log n)的算法,其中N是输出模式的大小,(n×m)是具有n个时间帧的输入的大小和m反应坐标。迄今为止,这是解决此问题的最佳时间复杂度。接下来,我们将其应用于β-发夹折叠轨迹,并证明该方法可提取有关蛋白质折叠中间状态和机理的关键信息。我们对该方法进行三个观察:(1)该方法恢复了以前通过视觉分析自由能表面获得的状态。 (2)它还成功地提取了以前工作中忽略的有意义的模式和结构,从而使人们更好地了解了β-发夹的折叠机制。这些新模式还将现有自由能表面中的各种状态与不同的反应坐标相互关联。 (3)该方法不需要计算自由能值,但它提供的分析与使用自由能态的方法可比,有时甚至更好,从而验证了反应坐标的选择。 (这项工作的摘要版本在2005年亚太生物信息学大会上发表。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号