首页> 美国卫生研究院文献>PLoS Clinical Trials >Can we use rapid lifetime determination for fast, fluorescence lifetime based, metabolic imaging? Precision and accuracy of double-exponential decay measurements with low total counts
【2h】

Can we use rapid lifetime determination for fast, fluorescence lifetime based, metabolic imaging? Precision and accuracy of double-exponential decay measurements with low total counts

机译:我们可以使用快速寿命测定来进行基于荧光寿命的快速代谢成像吗?总计数低的双指数衰减测量的精度和准确性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fluorescence lifetime imaging microscopy (FLIM) can assess cell’s metabolism through the fluorescence of the co-enzymes NADH and FAD, which exhibit a double-exponential decay, with components related to free and protein-bound conditions. In vivo real time clinical imaging applications demand fast acquisition. As photodamage limits excitation power, this is best achieved using wide-field techniques, like time-gated FLIM, and algorithms that require few images to calculate the decay parameters. The rapid lifetime determination (RLD) algorithm requires only four images to analyze a double-exponential decay. Using computational simulations, we evaluated the accuracy and precision of RLD when measuring endogenous fluorescence lifetimes and metabolic free to protein-bound ratios, for total counts per pixel (TC) lower than 104. The simulations were based on a time-gated FLIM instrument, accounting for its instrument response function, gain and noise. While the optimal acquisition setting depends on the values being measured, the accuracy of the free to protein-bound ratio α2/α1 is stable for low gains and gate separations larger than 1000 ps, while its precision is almost constant for gate separations between 1500 and 2500 ps. For the gate separations and free to protein-bound ratios considered, the accuracy error can be as high as 30% and the precision error can reach 60%. Precision errors lower than 10% cannot be obtained. The best performance occurs for low camera gains and gate separations near 1800 ps. When considering the narrow physiological ranges for the free to protein-bound ratio, the precision errors can be confined to an interval between 10% and 20%. RLD is a valid option when for real time FLIM. The simulations and methodology presented here can be applied to any time-gated FLIM instrument and are useful to obtain the accuracy and precision limits for RLD in the demanding conditions of TC lower than 104.
机译:荧光寿命成像显微镜(FLIM)可以通过辅酶NADH和FAD的荧光来评估细胞的代谢,辅酶NADH和FAD表现出双指数衰减,其组分与游离和结合蛋白质的条件有关。体内实时临床成像应用需要快速采集。由于光损伤限制了激发功率,因此最好使用宽场技术(例如时间门控FLIM)和需要很少图像来计算衰减参数的算法来实现。快速寿命确定(RLD)算法仅需要四个图像即可分析双指数衰减。通过计算仿真,我们评估了RLD在测量内源性荧光寿命和新陈代谢与蛋白质结合比率方面的准确性和精确度,因为每像素(TC)的总计数低于10 4 。该仿真基于时间门限的FLIM仪器,考虑了仪器的响应功能,增益和噪声。尽管最佳采集设置取决于所测量的值,但自由/蛋白质结合比α2/α1的精度对于低增益和大于1000 ps的栅距而言是稳定的,而其精度对于1500至1500 nm之间的栅距几乎是恒定的。 2500 ps。对于门分离和自由结合蛋白的比率,精度误差可高达30%,精度误差可达到60%。无法获得低于10%的精度误差。对于低摄像机增益和接近1800 ps的栅极间隔,会出现最佳性能。当考虑到游离蛋白结合率的狭窄生理范围时,精确度误差可以限制在10%到20%之间。对于实时FLIM,RLD是有效选项。本文介绍的仿真和方法论可应用于任何时间门限的FLIM仪器,对于在要求低于10 4 的TC苛刻条件下获得RLD的精度和精度限值很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号