首页> 美国卫生研究院文献>PLoS Clinical Trials >Essential Genes Embody Increased Mutational Robustness to Compensate for the Lack of Backup Genetic Redundancy
【2h】

Essential Genes Embody Increased Mutational Robustness to Compensate for the Lack of Backup Genetic Redundancy

机译:必需基因体现出增加的突变鲁棒性,以弥补缺乏后备遗传冗余的需求。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genetic robustness is a hallmark of cells, occurring through many mechanisms and at many levels. Essential genes lack the common robustness mechanism of genetic redundancy (i.e., existing alongside other genes with the same function), and thus appear at first glance to leave cells highly vulnerable to genetic or environmental perturbations. Here we explore a hypothesis that cells might protect against essential gene loss through mechanisms that occur at various cellular levels aside from the level of the gene. Using Escherichia coli and Saccharomyces cerevisiae as models, we find that essential genes are enriched over non-essential genes for properties we call “coding efficiency” and “coding robustness”, denoting respectively a gene’s efficiency of translation and robustness to non-synonymous mutations. The coding efficiency levels of essential genes are highly positively correlated with their evolutionary conservation levels, suggesting that this feature plays a key role in protecting conserved, evolutionarily important genes. We then extend our hypothesis into the realm of metabolic networks, showing that essential metabolic reactions are encoded by more “robust” genes than non-essential reactions, and that essential metabolites are produced by more reactions than non-essential metabolites. Taken together, these results testify that robustness at the gene-loss level and at the mutation level (and more generally, at two cellular levels that are usually treated separately) are not decoupled, but rather, that cellular vulnerability exposed due to complete gene loss is compensated by increased mutational robustness. Why some genes are backed up primarily against loss and others against mutations still remains an open question.
机译:遗传稳健性是细胞的标志,它通过多种机制和许多层次发生。必需基因缺乏通用的遗传冗余鲁棒性机制(即与具有相同功能的其他基因并存),因此乍看起来似乎使细胞极易受到遗传或环境干扰的影响。在这里,我们探讨了一个假说,即细胞可能通过除基因水平以外的各种细胞水平上发生的机制来防止必需的基因丢失。以大肠埃希氏菌和酿酒酵母为模型,我们发现必需基因比非必需基因富集了我们称为“编码效率”和“编码鲁棒性”的属性,分别表示基因对非同义突变的翻译效率和鲁棒性。必需基因的编码效率水平与其进化保守水平高度正相关,表明该功能在保护保守的,进化重要的基因中起关键作用。然后,我们将假设扩展到代谢网络领域,表明基本的代谢反应比非基本的反应由更多的“健壮”基因编码,并且基本的代谢产物比非基本的代谢产物通过更多的反应产生。综上所述,这些结果证明,在基因丧失水平和突变水平(更普遍地,在通常单独处理的两个细胞水平)上的鲁棒性并未解耦,而是由于基因完全丧失而暴露出的细胞脆弱性通过增加的突变鲁棒性来补偿。为什么某些基因主要针对丢失而备份,而其他基因针对突变仍是一个悬而未决的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号