首页> 美国卫生研究院文献>NPG Open Access >Characterization of the 1S–2S transition in antihydrogen
【2h】

Characterization of the 1S–2S transition in antihydrogen

机译:1S–2S过渡态在抗氢中的表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In 1928, Dirac published an equation that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles—antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter, including tests of fundamental symmetries such as charge–parity and charge–parity–time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart—the antihydrogen atom—of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S–2S transition was recently observed in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 1015 hertz. This is consistent with charge–parity–time invariance at a relative precision of 2 × 10−12—two orders of magnitude more precise than the previous determination—corresponding to an absolute energy sensitivity of 2 × 10−20 GeV.
机译:1928年,狄拉克(Dirac)发表了将量子力学和相对论相结合的方程式 。该方程式的负能量解决方案不是一开始就认为是非物理的,而是代表了一类迄今为止从未观察到和无法想象的粒子-反物质。 1932年,安德森(Anderson)发现了正电子 (或反电子),从而证实了反物质粒子的存在,但仍然不清楚为什么物质(而不是反物质)在大爆炸之后得以幸存。结果,对反物质的实验研究,包括对基本对称性的检验,例如电荷平价和电荷平价时间,以及寻找原始反物质证据(例如抗氦核)的研究,都具有很高的优先级在当代物理学研究中。氢原子在宇宙演化中以及在我们对量子物理学的理解的历史发展中的基本作用,使它的反物质对应物(反氢原子)特别受关注。当前的标准模型物理学要求氢和反氢具有相同的能级和谱线。最近在抗氢中观察到了激光驱动的1S–2S跃迁 。在这里,我们使用磁性俘获的反氢原子来表征这种转变的超精细成分之一,并将其​​与我们设备中氢的模型计算进行比较。我们发现谱线的形状与氢预期的非常吻合,共振频率与氢中的共振频率一致,在2.5×10 15 赫兹中,共振频率与5kHz左右。这与电荷奇偶时间不变性相对一致,相对精度为2×10 −12 -比先前的确定 精度高两个数量级,对应于绝对能量敏感度为2××10 −20 GeV。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号