首页> 美国卫生研究院文献>NeuroRx >Aberrant Regulation of DNA Methylation in Amyotrophic Lateral Sclerosis: A New Target of Disease Mechanisms
【2h】

Aberrant Regulation of DNA Methylation in Amyotrophic Lateral Sclerosis: A New Target of Disease Mechanisms

机译:肌萎缩性侧索硬化中DNA甲基化的异常调节:疾病机制的新目标。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. A diagnosis is fatal owing to degeneration of motor neurons in brain and spinal cord that control swallowing, breathing, and movement. ALS can be inherited, but most cases are not associated with a family history of the disease. The mechanisms causing motor neuron death in ALS are still unknown. Given the suspected complex interplay between multiple genes, the environment, metabolism, and lifestyle in the pathogenesis of ALS, we have hypothesized that the mechanisms of disease in ALS involve epigenetic contributions that can drive motor neuron degeneration. DNA methylation is an epigenetic mechanism for gene regulation engaged by DNA methyltransferase (Dnmt)-catalyzed methyl group transfer to carbon-5 in cytosine residues in gene regulatory promoter and nonpromoter regions. Recent genome-wide analyses have found differential gene methylation in human ALS. Neuropathologic assessments have revealed that motor neurons in human ALS show significant abnormalities in Dnmt1, Dnmt3a, and 5-methylcytosine. Similar changes are seen in mice with motor neuron degeneration, and Dnmt3a was found abundantly at synapses and in mitochondria. During apoptosis of cultured motor neuron-like cells, Dnmt1 and Dnmt3a protein levels increase, and 5-methylcytosine accumulates. Enforced expression of Dnmt3a, but not Dnmt1, induces degeneration of cultured neurons. Truncation mutation of the Dnmt3a catalytic domain and Dnmt3a RNAi blocks apoptosis of cultured neurons. Inhibition of Dnmt catalytic activity with small molecules RG108 and procainamide protects motor neurons from excessive DNA methylation and apoptosis in cell culture and in a mouse model of ALS. Thus, motor neurons can engage epigenetic mechanisms to cause their degeneration, involving Dnmts and increased DNA methylation. Aberrant DNA methylation in vulnerable cells is a new direction for discovering mechanisms of ALS pathogenesis that could be relevant to new disease target identification and therapies for ALS.Electronic supplementary materialThe online version of this article (doi:10.1007/s13311-013-0205-6) contains supplementary material, which is available to authorized users.
机译:肌萎缩性侧索硬化症(ALS)是成人发病的第三种最常见的神经退行性疾病。由于控制吞咽,呼吸和运动的大脑和脊髓中运动神经元的变性,因此诊断是致命的。 ALS可以遗传,但大多数病例与该疾病的家族史无关。导致ALS中运动神经元死亡的机制仍然未知。考虑到ALS发病机理中多个基因,环境,代谢和生活方式之间存在复杂的相互作用,我们假设ALS的疾病机制涉及可以驱动运动神经元变性的表观遗传贡献。 DNA甲基化是通过DNA甲基转移酶(Dnmt)催化的甲基转移到基因调控启动子和非启动子区域中胞嘧啶残基中的碳5上的基因调控的表观遗传机制。最近的全基因组分析发现人类ALS中存在差异基因甲基化。神经病理学评估显示,人ALS中的运动神经元在Dnmt1,Dnmt3a和5-甲基胞嘧啶中显示出明显异常。在运动神经元变性的小鼠中观察到类似的变化,并且在突触和线粒体中大量发现了Dnmt3a。在培养的运动神经元样细胞凋亡期间,Dnmt1和Dnmt3a蛋白水平增加,并且5-甲基胞嘧啶积累。 Dnmt3a而不是Dnmt1的强制表达诱导培养的神经元变性。 Dnmt3a催化域​​和Dnmt3a RNAi的截短突变会阻止培养的神经元的凋亡。用小分子RG108和普鲁卡因酰胺抑制Dnmt催化活性可保护运动神经元免受细胞培养物中和ALS小鼠模型中过度的DNA甲基化和细胞凋亡的影响。因此,运动神经元可以参与表观遗传机制引起其变性,涉及Dnmts和DNA甲基化增加。脆弱细胞中的异常DNA甲基化是发现ALS发病机制的新方向,该机制可能与ALS的新疾病靶标鉴定和疗法有关。电子补充材料本文的在线版本(doi:10.1007 / s13311-013-0205-6 )包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号