首页> 美国卫生研究院文献>Molecular Cellular Proteomics : MCP >Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library
【2h】

Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library

机译:使用全蛋白质组谱库进行谱到谱搜索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies.
机译:串联质谱(MS / MS)对肽序列的明确分配仍然是蛋白质组学中尚未解决的关键问题。光谱库搜索策略已成为肽鉴定的一种有前途的替代方法,其中将MS / MS谱图直接与可靠分配的谱图的参考谱库进行比较。与库大小有关的两个问题。首先,参考谱库仅限于重新发现以前鉴定的肽,不适用于新的肽,因为它们对人类蛋白质组的覆盖不完整。其次,在搜索整个人类蛋白质组大小的谱库时会出现问题。我们观察到,传统的点积计分方法不能随谱库大小而很好地缩放,显示出当库大小增加时灵敏度降低。我们表明,可以通过为大型频谱库的频谱间搜索优化评分指标来解决此问题。使用动力学片段化模型(MassAnalyzer版本2.1)模拟人类蛋白质组中130万个预测的胰蛋白酶肽的MS / MS光谱,以创建一个蛋白质组范围的模拟光谱库。使用概率和基于排名的评分方法时,与Mascot相比,对仿真库的搜索使MS / MS分配增加了24%。与参考谱库的并行搜索相比,模拟文库的蛋白质组范围覆盖导致独特肽分配增加11%。将参考光谱和模拟光谱合并到混合光谱库中后,可以实现进一步的改进,与Mascot搜索相比,MS / MS分配增加了52%。我们的研究证明了使用概率分数和基于排名的分数来改善频谱间搜索策略的性能的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号