首页> 美国卫生研究院文献>Journal of Anatomy and Physiology >Structure function and evolution of the gas exchangers: comparative perspectives
【2h】

Structure function and evolution of the gas exchangers: comparative perspectives

机译:气体交换器的结构功能和演变:比较观点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the evolutionary continuum, animals have faced similar fundamental challenges of acquiring molecular oxygen for aerobic metabolism. Under limitations and constraints imposed by factors such as phylogeny, behaviour, body size and environment, they have responded differently in founding optimal respiratory structures. A quintessence of the aphorism that ‘necessity is the mother of invention’, gas exchangers have been inaugurated through stiff cost–benefit analyses that have evoked transaction of trade-offs and compromises. Cogent structural–functional correlations occur in constructions of gas exchangers: within and between taxa, morphological complexity and respiratory efficiency increase with metabolic capacities and oxygen needs. Highly active, small endotherms have relatively better-refined gas exchangers compared with large, inactive ectotherms. Respiratory structures have developed from the plain cell membrane of the primeval prokaryotic unicells to complex multifunctional ones ofthe modern Metazoa. Regarding the respiratory medium used to extract oxygen from, animal life has had only two choices – water or air – within the biological range of temperature and pressure the only naturally occurring respirable fluids. In rarer cases, certain animalshave adapted to using both media. Gills (evaginated gas exchangers) are the primordial respiratory organs: they are the archetypal water breathing organs. Lungs (invaginated gas exchangers) are the model air breathing organs. Bimodal (transitional) breathers occupy the water–air interface. Presentation and exposure of external (water/air) and internal (haemolymph/blood) respiratory media, features determined by geometric arrangement of the conduits, are important features for gas exchange efficiency: counter-current, cross-current, uniform pool and infinite pool designs have variably developed.
机译:在整个进化过程中,动物面临着获取有氧代谢所需的分子氧的类似基本挑战。在系统发育,行为,体型和环境等因素施加的限制和约束下,他们在建立最佳呼吸结构方面的反应有所不同。 “必要是发明之母”这一格言的典型代表是,通过严格的成本效益分析为气体交换器揭开了序幕,这种分析引起了权衡和折衷的交易。气体交换器的结构中存在结构与功能的相关关系:分类单元内和之间,形态复杂性和呼吸效率随代谢能力和氧气需求的增加而增加。与大的,非活性的等温线相比,高活性的,小等温的吸热器具有相对更好的气体交换器。呼吸结构已从原始原核单细胞的平原细胞膜发展成为现代后生动物的复杂多功能细胞。关于用于从中提取氧气的呼吸介质,动物生命只有两种选择-水或空气-在温度和压力的生物学范围内,唯一的自然存在的可吸入液体。在极少数情况下,某些动物已经适应了使用两种媒介的情况。 ill(排空的气体交换器)是原始的呼吸器官:它们是原型的水呼吸器官。肺(气体交换器)是典型的呼吸器官。双峰(过渡)呼吸器占据了水-空气界面。由管道的几何布置确定的外部(水/空气)和内部(血淋巴/血液)呼吸介质的显示和暴露是气体交换效率的重要特征:逆流,错流,均匀池和无限池设计已经发展变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号