首页> 美国卫生研究院文献>IOS Press Open Library >Development of a Late-Life Dementia Prediction Index with Supervised Machine Learning in the Population-Based CAIDE Study
【2h】

Development of a Late-Life Dementia Prediction Index with Supervised Machine Learning in the Population-Based CAIDE Study

机译:在基于人群的CAIDE研究中使用监督机器学习开发晚期痴呆预测指数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Background and objective: This study aimed to develop a late-life dementia prediction model using a novel validated supervised machine learning method, the Disease State Index (DSI), in the Finnish population-based CAIDE study.>Methods: The CAIDE study was based on previous population-based midlife surveys. CAIDE participants were re-examined twice in late-life, and the first late-life re-examination was used as baseline for the present study. The main study population included 709 cognitively normal subjects at first re-examination who returned to the second re-examination up to 10 years later (incident dementia n = 39). An extended population (n = 1009, incident dementia 151) included non-participantson-survivors (national registers data). DSI was used to develop a dementia index based on first re-examination assessments. Performance in predicting dementia was assessed as area under the ROC curve (AUC).>Results: AUCs for DSI were 0.79 and 0.75 for main and extended populations. Included predictors were cognition, vascular factors, age, subjective memory complaints, and APOE genotype.>Conclusion: The supervised machine learning method performed well in identifying comprehensive profiles for predicting dementia development up to 10 years later. DSI could thus be useful for identifying individuals who are most at risk and may benefit from dementia prevention interventions.
机译:>背景和目的:这项研究旨在通过基于芬兰人群的CAIDE研究,使用一种经过验证的新型监督机器学习新方法,即疾病状态指数(DSI),来开发晚期痴呆症预测模型。 strong>方法: CAIDE研究基于以前的基于人口的中年调查。 CAIDE参与者在晚年进行了两次复查,并且首次进行了晚年复查作为本研究的基准。主要研究对象包括709名在第一次复查中认知正常的受试者,这些受试者在10年后返回第二次复查(痴呆事件n = 39)。扩展的人口(n = 1009,发生痴呆151)包括非参与者/非幸存者(国家登记数据)。 DSI用于根据首次复查评估制定痴呆指数。在ROC曲线下的面积评估了预测痴呆的性能。>结果:主要人群和扩展人群DSI的AUC分别为0.79和0.75。包括的预测因素包括认知,血管因子,年龄,主观记忆障碍和APOE基因型。>结论:监督的机器学习方法在识别可预测10年后痴呆症发展的综合概况方面表现良好。因此,DSI可能有助于识别风险最大的人,并可能从痴呆症预防干预措施中受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号