首页> 美国卫生研究院文献>IOS Press Open Library >Shear-Induced Amyloid Formation in the Brain: III. The Roles of Shear Energy and Seeding in a Proposed Shear Model
【2h】

Shear-Induced Amyloid Formation in the Brain: III. The Roles of Shear Energy and Seeding in a Proposed Shear Model

机译:剪切诱导的大脑淀粉样蛋白形成:III。拟议的剪切模型中剪切能和播种的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

If cerebrospinal and interstitial fluids move through very narrow brain flow channels, these restrictive surroundings generate varying levels of fluid shear and different shear rates, and dissolved amyloid monomers absorb different shear energies. It is proposed that dissolved amyloid-β protein (Aβ) and other amyloid monomers undergo shear-induced conformational changes that ultimately lead to amyloid monomer aggregation even at very low brain flow and shear rates. Soluble Aβ oligomers taken from diseased brains initiate in vivo amyloid formation in non-diseased brains. The brain environment is apparently responsible for this result. A mechanism involving extensional shear is proposed for the formation of a seed Aβ monomer molecule that ultimately promotes templated conformational change of other Aβ molecules. Under non-quiescent, non-equilibrium conditions, gentle extensional shear within the brain parenchyma, and perhaps even during laboratory preparation of Aβ samples, may be sufficient to cause subtle conformational changes in these monomers. These result from brain processes that significantly lower the high activation energy predicted for the quiescent Aβ dimerization process. It is further suggested that changes in brain location and changes brought about by aging expose Aβ molecules to different shear rates, total shear, and types of shear, resulting in different conformational changes in these molecules. The consequences of such changes caused by variable shear energy are proposed to underlie formation of amyloid strains causing different amyloid diseases. Amyloid researchers are urged to undertake studies with amyloids, anti-amyloid drugs, and antibodies while all of these are under shear conditions similar to those in the brain.
机译:如果脑脊液和组织液通过非常狭窄的大脑流动通道流动,则这些限制性环境会产生不同水平的流体剪切力和不同的剪切速率,并且溶解的淀粉样蛋白单体吸收不同的剪切能。有人提出,即使在极低的脑血流量和剪切速率下,溶解的淀粉样β蛋白(Aβ)和其他淀粉样单体也会经历剪切诱导的构象变化,最终导致淀粉样单体聚集。取自患病大脑的可溶性Aβ低聚物可在未患病的大脑中启动体内淀粉样蛋白的形成。显然,大脑环境是造成这种结果的原因。提出了涉及拉伸剪切的机制,用于形成种子Aβ单体分子,该分子最终促进其他Aβ分子的模板化构象变化。在非静态,非平衡条件下,脑实质内的轻微拉伸剪切,甚至在实验室制备Aβ样品期间,可能足以引起这些单体的微妙构象变化。这些是由于大脑过程显着降低了为静态Aβ二聚过程预测的高活化能而产生的。进一步表明,大脑位置的变化和衰老引起的变化使Aβ分子暴露于不同的剪切速率,总剪切和剪切类型,从而导致这些分子的构象变化不同。提出了由可变剪切能引起的这种变化的后果,其基础是引起不同淀粉样蛋白疾病的淀粉样蛋白菌株的形成。敦促淀粉样蛋白研究人员对淀粉样蛋白,抗淀粉样蛋白药物和抗体进行研究,而所有这些条件都在类似于大脑的剪切条件下进行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号