您现在的位置:首页>美国卫生研究院文献>Future Microbiology

期刊信息

  • 期刊名称:

    -

  • 刊频: Eighteen no. a year, 2019-
  • NLM标题:
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<9/11>
210条结果
  • 机译 对多杀巴斯德氏菌毒素和其他G蛋白调节细菌毒素的最新见解
    摘要:Over the past few decades, our understanding of the bacterial protein toxins that modulate G proteins has advanced tremendously through extensive biochemical and structural analyses. This article provides an updated survey of the various toxins that target G proteins, ending with a focus on recent mechanistic insights in our understanding of the deamidating toxin family. The dermonecrotic toxin from Pasteurella multocida (PMT) was recently added to the list of toxins that disrupt G-protein signal transduction through selective deamidation of their targets. The C3 deamidase domain of PMT has no sequence similarity to the deamidase domains of the dermonecrotic toxins from Escherichia coli (cytotoxic necrotizing factor (CNF)1-3), Yersinia (CNFY) and Bordetella (dermonecrotic toxin). The structure of PMT-C3 belongs to a family of transglutaminase-like proteins, with active site Cys–His–Asp catalytic triads distinct from E. coli CNF1.
  • 机译 布鲁氏菌分类学和进化
    • 作者:Thomas Ficht
    • 刊名:Future Microbiology
    • 2010年第6期
    摘要:Taxonomy and nomenclature represent man-made systems designed to enhance understanding of the relationship between organisms by comparison of discrete sets of properties. Initial efforts at bacterial taxonomy were flawed as a result of the previous use of nonsystematic approaches including common names resulting in confusing and inaccurate nomenclature. A decision was made to start afresh with bacterial nomenclature and to avoid the hazards experienced in the taxonomic classification of higher organisms. This was achieved by developing new rules designed to simplify classification and avoid unnecessary and confusing changes. This article reviews the work of a number of scientists attempting to reconcile new molecular data describing the phylogenetic relationship between Brucella organisms and a broader family of organisms with widely variant phenotypes that include human virulence and host range against a backdrop of strict regulatory requirements that fail to recognize significant differences between organisms with similar nomenclature.
  • 机译 在脊髓灰质炎病毒生命周期中扩展对P3蛋白的认识
    摘要:Poliovirus is the most extensively studied member of the order Picornavirales, which contains numerous medical, veterinary and agricultural pathogens. The picornavirus genome encodes a single polyprotein that is divided into three regions: P1, P2 and P3. P3 proteins are known to participate more directly in genome replication, for example by containing the viral RNA-dependent RNA polymerase (RdRp or 3Dpol), among several other proteins and enzymes. We will review recent data that provide new insight into the structure, function and mechanism of P3 proteins and their complexes, which are required for initiation of genome replication. Replication of poliovirus genomes occurs within macromolecular complexes, containing viral RNA, viral proteins and host-cell membranes, collectively referred to as replication complexes. P2 proteins clearly contribute to interactions with the host cell that are required for virus multiplication, including formation of replication complexes. We will discuss recent data that suggest a role for P3 proteins in formation of replication complexes. Among the least understood steps of the poliovirus lifecycle is encapsidation of genomic RNA. We will also describe data that suggest a role for P3 proteins in this step.
  • 机译 奈瑟菌孔蛋白的先天免疫功能及其与疫苗佐剂活性的关系
    • 作者:Lee M Wetzler
    • 刊名:Future Microbiology
    • 2010年第5期
    摘要:Neisseria meningitidis is a Gram-negative pathogenic bacteria responsible for bacterial meningitis and septicemia. Porins are the most represented outer membrane proteins in the pathogenic Neisseria species, functioning as pores for the exchange of ions, and are characterized by a trimeric β-barrel structure. Neisserial porins have been shown to act as adjuvants in the immune response via activation of B cells and other antigen-presenting cells. Their effect on the immune response is mediated by upregulation of the costimulatory molecule B7-2 (CD86) on the surface of antigen-presenting cells, an effect that is dependent on Toll-like receptor (TLR)2 and MyD88, through a cascade of signal transduction events mediated by direct binding of the porin to the TLR2–TLR1 heterodimer. This article summarizes work carried out investigating the mechanisms of the immune stimulating capacity of the neisserial porins (specifically meningococcal PorB), emphasizing cellular events involved in antigen-presenting cell activation and induction of expression of cell surface molecules involved in the immune response.
  • 机译 拖钓理想的模型主人:斑马鱼诱饵
    摘要:As little as 10 years ago, murine models of infectious disease were the host of choice for analyzing interactions between the pathogen and host during infection. However, not all pathogens can infect mice, nor do they always replicate the clinical syndromes observed in human infections. Furthermore, in the current economic environment, using mammalian models for large-scale screens may be less economically feasible. The emergence of the zebrafish (Danio rerio) as an infectious disease host model, as well as a model for vertebrate immune system development, has provided new information and insights into pathogenesis that, in many instances, would not have been possible using a murine model host. In this article we highlight some of the key findings and the latest techniques along with the many advantages of using the zebrafish host model to gain new insights into pathogenic mechanisms in a live vertebrate host.
  • 机译 隐孢子虫病中的人类免疫反应
    摘要:Immune responses play a critical role in protection from, and resolution of, cryptosporidiosis. However, the nature of these responses, particularly in humans, is not completely understood. Both innate and adaptive immune responses are important. Innate immune responses may be mediated by Toll-like receptor pathways, antimicrobial peptides, prostaglandins, mannose-binding lectin, cytokines and chemokines. Cell-mediated responses, particularly those involving CD4+ T cells and IFN-γ play a dominant role. Mucosal antibody responses may also be involved. Proteins mediating attachment and invasion may serve as putative protective antigens. Further knowledge of human immune responses in cryptosporidiosis is essential in order to develop targeted prophylactic and therapeutic interventions. This review focuses on recent advances and future prospects in the understanding of human immune responses to Cryptosporidium infection.
  • 机译 志贺毒素诱导的细胞凋亡
    • 作者:Vernon L Tesh
    • 刊名:Future Microbiology
    • 2010年第期
    摘要:Shiga toxins comprise a family of structurally and functionally related protein toxins expressed by Shigella dysenteriae serotype 1 and multiple serotypes of Escherichia coli. While the capacity of Shiga toxins to inhibit protein synthesis by catalytic inactivation of eukaryotic ribosomes has been well described, it is also apparent that Shiga toxins trigger apoptosis in many cell types. This review presents evidence that Shiga toxins induce apoptosis of epithelial, endothelial, leukocytic, lymphoid and neuronal cells. Apoptotic signaling pathways activated by the toxins are reviewed with an emphasis on signaling mechanisms that are shared among different cell types. Data suggesting that Shiga toxins induce apoptosis through the endoplasmic reticulum stress response and clinical evidence demonstrating apoptosis in humans infected with Shiga toxin-producing bacteria are briefly discussed. The potential for use of Shiga toxins to induce apoptosis in cancer cells is briefly reviewed.
  • 机译 百日咳毒素和腺苷酸环化酶毒素:百日咳博德特氏菌的关键毒力因子和细胞生物学工具
    摘要:Pertussis toxin and adenylate cyclase toxin are two important virulence factors of Bordetella pertussis, the bacterial cause of the respiratory disease pertussis or whooping cough. In addition to studies on the structure, function and role in pathogenesis of these two toxins, they are both used as cell biology tools for a variety of applications owing to their ability to enter mammalian cells, perform enzymatic activities and modify cell signaling events. In this article, recent data from the research literature that enhance our understanding of the nature of these two toxins, their role in the pathogenesis of B. pertussis infection and disease, particularly in modulating host immune responses, and their use as tools for other areas of research will be outlined.
  • 机译 揭示CD8,CD4和对复杂病原体的抗体反应之间的相互作用
    摘要:Vaccinia virus (VACV) was used as the vaccine strain to eradicate smallpox. VACV is still administered to healthcare workers or researchers who are at risk of contracting the virus, and to military personnel. Thus, VACV represents a weapon against outbreaks, both natural (e.g., monkeypox) or man-made (bioterror). This virus is also used as a vector for experimental vaccine development (cancer/infectious disease). As a prototypic poxvirus, VACV is a model system for studying host–pathogen interactions. Until recently, little was known about the targets of host immune responses, which was likely owing to VACVs large genome (>200 open reading frames). However, the last few years have witnessed an explosion of data, and VACV has quickly become a useful model to study adaptive immune responses. This review summarizes and highlights key findings based on identification of VACV antigens targeted by the immune system (CD4, CD8 and antibodies) and the complex interplay between responses.
  • 机译 使用基于RNAi的筛选来鉴定参与病毒复制的宿主蛋白
    • 作者:Alec J Hirsch
    • 刊名:Future Microbiology
    • 2010年第2期
    摘要:The recent development of RNAi-based techniques for protein knockdown in mammalian cells has allowed for unprecedented flexibility in the study of protein function. Currently, large siRNA libraries are available that allow the knockdown of all proteins known to be encoded by the human genome. These libraries have been used to identify the host proteins required for the replication of several clinically important viruses, including HIV, flaviviruses and influenza. This review summarizes the methods used in RNAi-based screening for host factors involved in virus replication, and discusses published examples of such screens.
  • 机译 副粘病毒磷酸蛋白的磷酸化及其在病毒基因表达中的作用
    摘要:Paramyxoviruses include many important human and animal pathogens such as measles virus, mumps virus, human parainfluenza viruses, and respiratory syncytial virus, as well as emerging viruses such as Nipah virus and Hendra virus. The paramyxovirus RNA-dependent RNA polymerase consists of the phosphoprotein (P) and the large protein. Both of these proteins are essential for viral RNA synthesis. The P protein is phosphorylated at multiple sites, probably by more than one host kinase. While it is thought that the phosphorylation of P is important for its role in viral RNA synthesis, the precise role of P protein phosphorylation remains an enigma. For instance, it was demonstrated that the putative CKII phosphorylation sites of the P protein of respiratory syncytial virus play a role in viral RNA synthesis using a minigenome replicon system; however, mutating these putative CKII phosphorylation sites within a viral genome had no effect on viral RNA synthesis, leading to the hypothesis that P protein phosphorylation, at least by CKII, does not play a role in viral RNA synthesis. Recently, it has been reported that the phosphorylation state of the P protein of parainfluenza virus 5, a prototypical paramyxovirus, correlates with the ability of P protein to synthesize viral RNA, indicating that P protein phosphorylation does in fact play a role in viral RNA synthesis. Furthermore, host kinases PLK1, as well as AKT1 have been found to play critical roles in paramyxovirus RNA synthesis through regulation of P protein phosphorylation status. Beyond furthering our understanding of paramyxovirus RNA replication, these recent discoveries may also result in a new paradigm in treating infections caused by these viruses, as host kinases that regulate paramyxovirus replication are investigated as potential targets of therapeutic intervention.
  • 机译 防御素减弱小鼠的细胞因子反应,但增强对牙龈卟啉单胞菌粘附素的抗体反应
    摘要:AimOur aim is to assess the ability of human neutrophil peptide α-defensins (HNPs) and human β-defensins (HBDs) to attenuate proinflammatory cytokine responses and enhance antibody responses to recombinant hemagglutinin B (rHagB) or recombinant fimbrillin A (rFimA) from Porphyromonas gingivalis 381 in mice.
  • 机译 防御素作为抗炎化合物和粘膜佐剂
    摘要:Human neutrophil peptide α-defensins and human β-defensins are small, well-characterized peptides with broad antimicrobial activities. In mixtures with microbial antigens, defensins attenuate proinflammatory cytokine responses by dendritic cells in culture, attenuate proinflammatory cytokine responses in the nasal fluids of exposed mice and enhance antibody responses in the serum of vaccinated mice. Although the exact mechanisms are unknown, defensins first start by binding to microbial antigens and adhesins, often attenuating toxic or inflammatory-inducing capacities. Binding is not generic; it appears to be both defensin-specific and antigen-specific with high affinities. Binding of defensins to antigens may, in turn, alter the interaction of antigens with epithelial cells and antigen-presenting cells attenuating the production of proinflammatory cytokines. The binding of defensins to antigens may also facilitate the delivery of bound antigen to antigen-presenting cells in some cases via specific receptors. These interactions enhance the immunogenicity of the bound antigen in an adjuvant-like fashion. Future research will determine the extent to which defensins can suppress early events in inflammation and enhance systemic antibody responses, a very recent and exciting concept that could be exploited to develop therapeutics to prevent or treat a variety of oral mucosal infections, particularly where inflammation plays a role in the pathogenesis of disease and its long-term sequelae.
  • 机译 红细胞通透性改变的疟原虫突变体:一种新的耐药机制和重要的分子工具
    摘要:Erythrocytes infected with plasmodia, including those that cause human malaria, have increased permeability to a diverse collection of organic and inorganic solutes. While these increases have been known for decades, their mechanistic basis was unclear until electrophysiological studies revealed flux through one or more ion channels on the infected erythrocyte membrane. Current debates have centered on the number of distinct ion channels, which channels mediate the transport of each solute and whether the channels represent parasite-encoded proteins or human channels activated after infection. This article reviews the identification of the plasmodial surface anion channel and other proposed channels with an emphasis on two distinct channel mutants generated through in vitro selection. These mutants implicate parasite genetic elements in the parasite-induced permeability, reveal an important new antimalarial drug resistance mechanism and provide tools for molecular studies. We also critically examine the technical issues relevant to the detection of ion channels by electrophysiological methods; these technical considerations have general applicability for interpreting studies of various ion channels proposed for the infected erythrocyte membrane.
  • 机译 HSV-2抑制疗法在预防HIV中的作用
    摘要:
  • 机译 金黄色葡萄球菌鼻腔运输及其影响因素
    摘要:
  • 机译 锥虫溶解因子的活性:先天免疫的新组成部分。
    摘要:Trypanosome lytic factors (TLFs) are high-density lipoproteins and components of primate innate immunity. TLFs are characterized by their ability to kill extracellular protozoon parasites of the genus Trypanosoma. Two subspecies of Trypanosoma brucei have evolved resistance to TLFs and can consequently infect humans, resulting in the disease African sleeping sickness. The unique protein components of TLFs are a hemoglobin-binding protein, haptoglobin-related protein and a pore-forming protein, apoL-I. The recent advances in our understanding of the roles that these proteins play in the mechanism of TLF-mediated lysis are highlighted in this article. In light of recent data, which demonstrate that TLFs can ameliorate infection by the intracellular pathogen Leishmania, we also discuss the broader function of TLFs as components of innate immunity.
  • 机译 多组分药物外排复合物:结构和组装机理
    摘要:Multidrug efflux pumps are major contributors to intrinsic antibiotic resistance in Gram-negative pathogens. The basic structure of these pumps comprises an inner membrane transporter, a periplasmic membrane fusion protein and an outer membrane channel. However, the architecture and composition of multidrug efflux complexes vary significantly because of the topological and functional diversity of the inner membrane transporters. This article presents the current views on architecture and assembly of multicomponent drug efflux transporters from Gram-negative bacteria.
  • 机译 II型分泌物的许多底物和功能:从军团菌中吸取的教训
    摘要:Type II secretion is one of six systems that exist in Gram-negative bacteria for the purpose of secreting proteins into the extracellular milieu and/or into host cells. This article will review the various recent studies of Legionella pneumophila that have increased our appreciation of the numbers, types and novelties of proteins that can be secreted via the type II system, as well as the many ways in which type II secretion can promote bacterial physiology, growth, ecology, intracellular infection and virulence. In this context, type II secretion represents a potentially important target for industrial and biomedical applications.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号